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Preface 

	

This research was funded within the Marie Curie Initial Training Network - 

Environmental ChemOinformatics (ECO-ITN). Aimed at developing the 

careers for Environmental Cheminformatians, this Initial Training Network 

(ITN) has been mainly implemented to provide advanced training in both 

environmental and computational approaches. This ITN is functioning within 

several research groups located in 5 EU countries over a period of four years 

until September 2013. Additionally, external collaborations with other 

research networks and industrial partners open doors to new future 

opportunities for the ECO participants. Internal trainings at other ECO 

partner groups facilitate a better way of knowledge exchange within the 

training network while the flexibility to opt for external collaborators allow 

participants to take their research a step ahead on a global level. 

One of the important considerations within the new European legislation on 

chemicals and their safe use REACH (Registration, Evaluation, 

Authorization and restriction of CHemicals) is to minimize the number of 

animal testing by replacing them with suitable alternatives such as in-silico 

methods, wherever possible. The primary goals of ECO-ITN can be fits well 

with these considerations since the trainees within this project are exposed to 

several state-of-the-art computational approaches which can then be applied 

to towards the development of novel automated strategies for risk assessment 

of chemicals. 

 

Thesis outline 

As the title suggests, this work is mainly focussed at providing an 

Applicability Domain (AD) perspective towards the QSAR/QSPR models 

predicting environmental properties relevant to REACH regulations. A well-

defined AD is one of the prerequisites for a predictive model before it is 



 

 

considered as validated for regulatory purposes. The main idea behind 

compiling this thesis is to provide the reader with all the major insights 

towards defining a model’s AD where it can reliably predict the modelled 

endpoint for new test samples.  

The thesis contents are divided into three major parts summarized as follows:  

The first section is an introductory part which guides through the scope of 

validated QSARs within REACH. A regulatory insight is presented towards 

the consideration of QSAR methodologies as one of the alternatives to 

animal testing and the possibility to use its reliable predictions directly or 

include them as supplementary information within a Weight of Evidence 

approach. The major principles towards QSAR validation are briefly 

discussed with a particular attention towards the prerequisite to have a well-

defined AD for reliable predictions.  

The second section initially discusses several classical approaches proposed 

in the existing literature towards defining the AD of QSAR models in its 

descriptor space. In theory, all these approaches attempted to characterize the 

interpolation space where a model is capable of making reliable predictions. 

The major highlights for each approach include a) the basic strategy 

followed to characterize the interpolation space and b) the major advantages 

and/or limitations in addressing the model’s AD. Later, a novel AD approach 

based on the classical k-Nearest Neighbours principle is introduced which 

also features the major highlight of the thesis. This discussion includes the 

motivation behind proposing the new approach followed by the description 

of the underlying algorithm. Finally, an AD perspective is provided towards 

the application of a novel pseudo-distance called Locally-centred 

Mahalanobis distance for outlier detection. The results derived from this 

newly proposed outlier detection approach provides an excellent platform to 

better understand the impact of extreme training outliers on the defined AD 

using different AD approaches as well as to verify if the test samples 

detected as outliers in the training space could hint for them being unreliably 

predicted and thus, likely to get excluded from the model’s AD. 



 

 

The final section of this thesis work discusses the results derived 

implementing previously introduced classical and two novel AD approaches 

on several QSAR models from the existing literature. Some of these models 

predicting significant environmental properties were intended to contribute 

towards REACH implementation and thus, served as ideal case studies to 

better evaluate for their AD. The performance of both the novel AD 

approaches was evaluated with respect to the classical methodologies. 

Moreover, presence of consensus test samples excluded from the model’s 

AD with different approaches, further allowed to reflect upon the similar 

trends within the underlying algorithms and also added to the confidence in 

rendering those test samples being unreliably predicted.  

Last but not the least, general conclusions and future prospects for this thesis 

work were briefly discussed. All the relevant research articles accepted by 

the scientific journals were listed and reported in the appendix. 
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Chapter 1  

 

 

Introduction 

 

 
As an alternative to animal testing, provisions for Quantitative 

Structure Activity Relationship (QSAR) predictions towards regulatory 

purposes are well-discussed and documented within the framework of 

a new European Community regulation for the safe use of chemicals – 

REACH. This chapter discusses the regulatory perspective towards the 

acceptance of QSARs and introduces the major principles for their 

validation, paying particular attention towards defining their 

Applicability Domain in order to differentiate the reliable predictions 

from extrapolations.  

 

 

1.1   Scope of QSARs within REACH framework 

REACH is a European legislation on chemicals that came into force in 2007. 

It is mainly focussed on the risk assessment of chemicals for their safe use 

[1].  As a part of this regulation, a major responsibility lies on the industry 

towards risk management by providing all the necessary information about 

the chemicals and their properties. The outcome of REACH is mainly aimed 

at enhancing the human health protection and minimizing the environmental 

hazards by the safer handling of chemicals as well as replacement of 

hazardous chemicals with suitable alternatives [2,3].  

One of the major objectives of implementing REACH is to minimize the 

animal testing. To achieve this, usefulness of non-testing approaches has 

been highlighted and as a result, REACH encourages the use of cost-

effective methods like QSARs, Read-Across approaches and expert systems. 
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The possibility to train QSARs based on high quality and reliable data can 

allow evaluation of several physicochemical and biological properties for 

various chemicals relevant to REACH. Moreover, the results derived from 

QSARs can also be used as a part of Weight of Evidence (WoE) approach. 

Thus, QSARs and other relevant approaches can be significant for REACH 

in filling the data gaps prevailing towards the evaluation of several chemical 

properties. Depending on the reliability in their predictions, the QSAR 

models can directly replace the test data otherwise can be used as 

supplementary information to improve the transparency in evaluations [2,3]. 

QSARs are based on the principle that similar chemical structures can lead to 

similar biological activities. In general, QSARs can be thought as a 

combination of data analysis and statistical methods that are aimed towards 

finding a trend within the descriptor values of chemicals, which in turn can 

explain the corresponding trend in their biological activities [4]. A basic 

workflow of a QSAR includes data collection and pretreatment, followed by 

implementation of a model development technique (for instance, Linear 

Regression, Artificial Neural Network and so on) and finally evaluating the 

model performance through internal and external validation. 

Enormous experimentally derived data for several significant endpoints is 

readily available from the existing literature. This data collection can be an 

excellent input to train models towards predicting several physicochemical 

and biological activities for new test compounds. This idea was realised in 

the past decades and consequently, several QSAR models emerged since 

then predicting different endpoints. From time to time, more efficient 

algorithms were proposed towards model development, thus a range of 

different methodologies were in place from a Simple Linear Regression to 

Artificial Neural Networks. 

1.2  QSAR predictions may be reliable yet restricted 

In theory, applicability of QSAR models irrespective of their predictive 

reliability is limited. These limitations of a model can be referred to its 

structural domain and the response space which defines the scope of that 

model [5]. Usually, the predictive models are trained using a limited set of 
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chemical structures. The level of structural diversity reflected within a 

training set strongly relies on the information contained for instance, 

functional groups present, chemical categories covered and so on. For 

instance, a QSAR model trained using only aromatic structures may not be 

useful in predicting a test set of aliphatic structures. The resulting predictions 

will be unreliable as they will be beyond the scope of that model. Thus, it is 

reasonable to expect that the scope of local models is limited, though it 

shouldn’t be confused with their predictive ability.  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.1  Evaluating the reliability in prediction for new test samples 

 

It is crucial that a model is used for predicting only those test samples that 

are structurally similar to the samples used for training purpose [5-9]. It 

makes sense because structural similarity implies similarity in the descriptor 

values, which in turn can fit the trend in deriving a modelled endpoint. In 

other words, test samples must fall within the structural domain described by 

its descriptor space. Since, a model is usually aimed to identify a reliable 

trend between the descriptor values and the modelled endpoint, the 
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prediction of a structurally similar test sample is likely to fall within the 

response domain of the training samples. Figure 1.1 informs that test samples 

satisfying the limitations of a model within its structural domain and 

response space fall within the Applicability Domain (AD) and are thus, 

associated with a reliable prediction. On the contrary, those excluded from 

the AD where unreliably predicted. 

 

1.3  Validated QSARs for their regulatory acceptance 

As discussed in the earlier section, QSARs can be thought amongst one of 

the promising non-testing approaches towards regulatory use. However, to 

ensure that the QSAR predictions are reliable, several conditions are 

necessary to be met by such predictive models. The regulatory authorities 

need to make sure that a QSAR model was strictly validated before being 

applied for regulatory assessment of chemicals. Before a QSAR model can 

be accepted for regulatory use, its validity has to be demonstrated, the test 

sample being predicted has to fall within the AD of that model and reliability 

in the modelling approach has to be well-documented in order to provide the 

transparency in the underlying algorithm. 

No formal adoption procedure is suggested for QSARs within REACH. 

Thus, information provided to the regulatory authorities towards 

demonstrating the model’s validity and reliability in its predictive ability will 

be evaluated in deciding upon the adequacy of a model and its predictions 

for regulatory acceptance [3]. To address validation procedure, REACH 

referred to the principles for QSAR validation adopted by OECD in 2004. 

These principles are internationally agreed and each of them highlights 

several key aspects relevant to the regulatory acceptance of QSAR models 

[3,5-10].  

 

For its regulatory consideration, a validated QSAR must be associated with 

these principles listed in the following order [3,10]: 
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a) A defined endpoint 

As several experimental methods and conditions are feasible towards 

prediction of a given physicochemical property or a biological effect, the 

first OECD principle provides information about the endpoint being 

modelled.  

b) An unambiguous algorithm 

As several modelling approaches have been proposed from time to time, the 

second principle tries to bring transparency in the algorithm used towards 

model development.  

c) A defined domain of applicability 

In theory, the applicability of a QSAR model is limited to the chemical that 

are structurally similar to those used to train that model. The third principle 

tries to highlight this feature and informs about the limitations of a proposed 

model in its structural domain and response space.  

d) Appropriate measures of goodness-of-fit, robustness and predictivity  

To better evaluate for the model’s performance, it is essential to understand 

if it’s robust, is not overfitted and is able to reliably predict the modelled 

endpoint for external test samples. To achieve this, the fourth principle for 

model validation provides with all the necessary information derived 

performing an internal and external validation using the training and an 

external test set, respectively.  

e) A mechanistic interpretation, if possible 

The mechanistic relevance between the set of descriptors used towards 

model development and the endpoint being modelled, can further add to the 

confidence in a model, however, it is also understandable that deriving such 

mechanistic interpretation is not always possible and thus, the fifth principle 

recommends a model developer to provide mechanistic basis for the 

descriptors and its relevance to the modelled endpoint, whenever possible.   
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1.4  Applicability domain for reliable predictions 

As discussed earlier, the third principle of QSAR validation deals with 

defining model’s AD. It is one of the prerequisites to have a well-defined AD 

before a model can be considered as validated. Several approaches have been 

discussed from time to time in the existing literature towards defining a 

model’s AD and an entire section of this thesis is dedicated discussing these 

methodologies [5].  

In theory, all these approaches attempted to characterize the interpolation 

space for reliable predictions using different algorithms [6,11-13]. The 

efficiency of a strategy can be estimated based on its ability to maximize the 

retention of reliable test predictions. Depending on the nature of endpoint 

being modelled, QSAR models can be divided into two major categories, 

regression and classification models. Regression models are implemented for 

quantitative endpoints, such as LC50 in aquatic toxicity, Bioconcentration 

factor and so on. On the other hand, classification models deal with 

endpoints of qualitative nature, for instance if a test molecule is ready 

biodegradable or not ready biodegradable, is a carcinogen or non-carcinogen. 

In a case of regression model, the reliability measure is quantitative where a 

lowest prediction error is desirable, while in the case of classification 

models, the underlying algorithm tries to achieve reliability by maximizing 

the allocation of test molecules to their correct classes.  

If a test molecule is associated with a very high prediction error or is 

allocated to a wrong class, the reliability in its prediction decreases. There 

can be several reasons behind deriving an unreliable prediction for instance, 

the new test molecule contains some specific functional groups that are 

unknown to the training space, the test molecule reacts with a specific mode 

of action which cannot be described well with the set of descriptors used for 

training that model or there are no structurally similar training molecules 

identified for a given test molecule. There may be several other explanations 

behind deriving an unreliable prediction; however, most of them converge to 

a single conclusion that is the test molecule could be beyond the scope of 

that model. 
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One of the major concerns about QSARs from a regulatory perspective is the 

reliability in their predictions. A QSAR model with a defined a domain of 

applicability makes predictions with a defined level of reliability. When this 

model is applied to a new set of test molecules, the resulting predictions that 

fall within its AD can be associated with that given level of reliability. In 

other words, there exists a trade-off between the applicability of a model and 

the reliability in its predictions.  Thus, from a regulatory perspective, a 

prediction falling outside the model’s AD is associated with a lower level of 

reliability. A well-defined AD can allow the regulatory authorities to better 

evaluate the structural domain in which a model can predict reliably and 

prevents from extrapolating beyond the scope of that model [2-3]. 

There are several ways in which a model’s AD could be addressed. For 

instance, in a model’s descriptor space, the defined AD can be thought to be 

restricted to the test molecules with relevant descriptor values; in a 

mechanistic domain the defined AD can be limited to the test molecules 

acting based on the same mode of action represented by the training set 

molecules; in a metabolic domain, the AD can be defined based on the 

possibilities of the molecules to undergo transformation or get metabolized 

[2-3].  With growing awareness about the QSAR validation for its regulatory 

acceptance, the development and implementation of different AD strategies 

has become one of the promising areas of research in the field of QSAR in 

the current years.  

From time to time, more efficient approaches have been proposed 

overcoming several of the prevailing issues, however until now, no strategy 

towards defining a model’s AD has been officially accepted or recognized 

[14]. Nevertheless, emerging awareness towards non-testing approaches is 

likely to keep the QSARs in focus. A joint effort between regulators, 

industry and researchers can shape a better future of such alternative 

methods
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Chapter 2  

 

 

 

Classical ways of characterizing the interpolation space 

 

 
This chapter discusses several classical approaches towards defining 

the Applicability Domain of a QSAR model in its descriptor space. 

The major focus is given on the methodology used to characterize the 

interpolation space where the model is expected to make reliable 

predictions. Most of the discussed approaches were associated with 

their own advantages and limitations. Their implementation on a two-

dimensional simulated dataset and the resulting contour plots allowed a 

better understanding of their defined domain of applicability.  

 

 

2.1 An introduction to the AD methodologies 

Characterization of the interpolation space is very significant to define the 

AD for a given QSAR model. This characterised space can be associated 

with reliable predictions derived from the model and helps the user to 

evaluate the reliability in prediction for a given query molecule Depending 

upon how efficiently the interpolation space is defined, the clarity and 

transparency in distinguishing quality predictions from extrapolations also 

improves. Several AD approaches have been already proposed and primarily 

they all differ in the way how they characterize the interpolation space 

defined by the descriptors used. They can be classified into following four 

major categories based on the methodology used for interpolation space 

characterization in the model’s descriptor space: range-based methods, 

geometric methods, distance-based methods and Probability Density 

Distribution based methods [5-6,11-13]. 
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This chapter discusses all the above-mentioned classical approaches which 

were then implemented on the two-dimensional simulated datasets shown in 

Figures 2.1 and 2.2. 

 

Figure 2.1 Scatter plot for the first simulated dataset 

As shown in Figure 2.1, the first simulated dataset consists of a cluster with 

48 training samples and 2 isolated samples (49 and 50) which were localized 

distant from each other as well as the cluster.  

 

Figure 2.2  Scatter plot for the second simulated dataset 
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As shown in Figure 2.2, the second simulated dataset comprised of four 

clusters of samples and an isolated sample (49) between them.  

The AD defined implementing each of these approaches was visualized 

using contour plots for the simulated datasets derived projecting several data 

points enough to fill its training space.  These plots allowed a better 

understanding of the features relevant to the interpolation space 

characterized with these existing approaches and wherever possible, also 

reflected the prevailing drawbacks in their methodologies.  

 

2.2 Range-based and Geometric Methods 

These are considered as the simplest methods to characterize a model’s 

interpolation space. 

2.2.1 Bounding Box 

This approach considers the range of individual descriptors used to build the 

model. Assuming a uniform distribution, resulting domain of applicability 

can be imagined as a Bounding Box which is a p-dimensional hyper-

rectangle defined on the basis of maximum and minimum values of each 

descriptor used to build the model. The sides of this hyper-rectangle are 

parallel with respect to the coordinate axes. However, there are several 

drawbacks associated with this approach: since only descriptor ranges are 

taken into consideration, empty regions in the interpolation space cannot be 

identified and also the correlation between descriptors cannot be taken into 

account [11,12]. 

Figure 2.3 provides with the contour plot implementing Bounding Box on 

the simulated datasets introduced earlier. As shown in the Figure 2.3a, the 

characterized interpolation space accounts for a considerable empty space 

between the cluster and two isolated samples. 
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Figure 2.3 Contour plots for the simulated datasets derived implementing Bounding Box. 

First simulated dataset (2.3a) and second simulated dataset (2.3b) 

This implies that the presence of one or more outliers in the training 

extremities can have a huge impact on the defined AD, which is not 

desirable. Figure 2.3b provides with the contour plot for the second 

simulated dataset using Bounding Box. As expected, empty regions between 

the clusters were considered within the AD as a result of which the isolated 

sample (49) was rendered as reliable.  

2.2.2 PCA Bounding Box 

Principal Component Analysis (PCA) transforms the original data into a new 

coordinate system by the rotation of axes, such that the new axes are 

orthogonal to each other and aligned in the direction having maximum 

variance within the data. These new axes are called Principal Components 

(PCs) representing the maximum variance within the dataset [15]. A M-

dimensional hyper-rectangle (where M is the number of significant 

components) is obtained similar to the previous approach by considering the 

projection of the molecules in the principal component space, however 

taking into account the maximum and minimum values for the PCs. The 

implementation of Bounding Box with PCA can overcome the problem of 

correlation between descriptors but empty regions within the interpolation 

space still remains an issue [11-13]. Moreover, selection of appropriate 

number of components is significant to implement this approach. For all the 

case studies discussed in this thesis, only those PCs having eigenvalues 

greater than the average eigenvalue (which corresponds to 1 when data are 

autoscaled) were considered. This criterion was chosen in order not to 
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include the influence of noise that is taken into account by the remaining PCs 

with lower eigenvalues. However, in the case of two dimensional datasets 

(like the simulated dataset being discussed here), by default both the 

resulting PCs were considered.  

 

Figure 2.4  Contour plot for the simulated datasets derived implementing PCA Bounding 

Box. First simulated dataset (2.4a), second simulated dataset (2.4b). 

The contour plot in Figure 2.4a was derived implementing the PCA 

Bounding Box approach on the first simulated dataset. As clear from the 

figure, the issue of accounting for undesirable empty regions in the defined 

interpolation space still prevails.  As shown in the Figure 2.4b, like the 

earlier approach, PCA bounding box included unnecessary empty regions 

between the clusters within the defined AD for the second simulated dataset.  

2.2.3 Convex Hull 

With this geometric approach, interpolation space is defined by the smallest 

convex area containing the entire training set. Implementing a Convex Hull 

could be challenging with increasing data complexity [16]. For two or three 

dimensional data, several algorithms are proposed; however, increase in 

dimensions contributes to the order of complexity. This could be a major 

drawback for this approach since in practice, not all the QSARs are limited 

to a small number of molecular descriptors. Several descriptors at times are 

needed to efficiently identify the trends in the modelled endpoint. Thus in 

theory, the implementation of this approach is limited to QSAR models with 

very limited number of descriptors. Apart from this issue, set boundaries are 

analysed without considering the actual data distribution. Similar to the 
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range-based approaches, Convex Hull cannot identify the potential internal 

empty regions within the interpolation space [11-12]. 

 

Figure 2.5  Contour plots derived for the simulated datasets implementing Convex Hull. 

First simulated dataset (2.5a), second simulated dataset (2.5b). 

Figure 2.5a shows the convex hull defined for the first simulated dataset. The 

defined hull reflects the interpolation space for reliable predictions. Like the 

range-based approaches, this strategy cannot overcome the existing 

limitation towards accounting for the empty regions.  The AD defined for the 

second simulated dataset is shown in the contour plot of Figure 2.5b. The 

derived convex hull enclosed all the four clusters within a common 

interpolation space thus including the empty regions between the clusters 

within the defined AD. 

The implementation of this approach in this case was quite simple as the 

simulated datasets were two-dimensional. In practice, QSAR models can 

have much higher level of complexity with multiple descriptors which could 

render this approach quite time consuming. 

 

2.3 Distance-Based Methods 

These approaches calculate the distance of test molecules from a defined 

point, (usually the data centroid) within the descriptor space of the training 

data. The general idea is to compare the distances measured between this 

defined point and the test molecules with a pre-defined threshold. The 

threshold is a user-defined parameter and is set to maximize the separation of 
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dense regions within the original data. However, the cut-off value does not 

entirely reflect the actual data density [5-6,11-13]. No strict rules were 

evident from the literature about defining thresholds for distance-based 

approaches and thus it is up to the user how to define them. 

2.3.1 Centroid-based distance approach 

In this approach, the distances of the training molecules from their centroid 

are calculated and based on a user-defined criterion, a cut-off distance value 

is considered as the threshold. For all the case studies dealt in this thesis, the 

distance value of the training molecules from their centroid corresponding to 

the 95
th

 percentile was considered as the threshold. Later, the distances of the 

test samples from the centroid of the training set were derived and compared 

with the threshold value. If they were lesser or equal to the threshold, those 

test molecules were included within the model’s AD, else discarded.  

In theory, this approach can be implemented using a wide range of distance 

measures available in the literature however, for all the case studies dealt in 

this thesis work, following three distance measures will be considered: 

Euclidean, Manhattan and Mahalanobis distances.  

Table 2.1  Formulas for different distance measures 

Distance measure Formula 

Euclidean  ( )
2

1

p

st sj tj

j

d x x
=

= −∑  

Manhattan 
1

p

st sj tj

j

d x x
=

= −∑  

Mahalanobis 
( ) ( )

T 1  

where  is the covariance matrix

st s t s td −= − −x x S x x

S
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Given a multidimensional matrix X whose rows represent molecules and 

columns their corresponding descriptor values, Table 2.1 provides with the 

formulas to derive three different distances between two objects s and t    

described by p variables. sjx and tjx represent the jth variable describing the 

objects s and t, respectively. s
x and t

x represent the p-dimensional vectors for 

the objects s and t, respectively [17]. 

 

 

 

Figure 2.6  Contour plots derived for the simulated datasets implementing centroid-based 

distance approach. First simulated dataset: Euclidean (2.6a), Manhattan (2.6b), 

Mahalanobis (2.6c). Second simulated dataset: Euclidean (2.6d), Manhattan (2.6e), 

Mahalanobis (2.6f). 
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Iso-distance contours constitute the regions having constant distance 

measures and generally their shapes differ with approaches according to the 

distance measure considered, for example, ellipsoids for Mahalanobis or 

spherical for Euclidean distances [12]. 

Figure 2.6 shows the contour plots derived on the both simulated datasets 

using three different distance measures. As the threshold was set to 95
th

 

percentile, the two isolated training samples were not included in the defined 

AD with all the three distance measures. The interpolation space mainly 

represented the regions around the cluster; the only difference was in the 

shape of the iso-distance contours depending on the distance measure used.  

Approaches based on calculating leverages are also quite recommended for 

defining the AD of a QSAR model [18]. Leverage of a query chemical is 

proportional to its Mahalanobis distance measure from the centroid of the 

training set. For a given descriptor matrix X with rows as molecules and 

columns representing the descriptor values, its leverage matrix (H) is 

obtained with the following equation :
 
 

                                                                                                  (2.1)  

where X is the model matrix while X
T
 is its transpose matrix. 

Diagonal values in the H matrix represent the leverage values for different 

molecules in a given dataset. The molecules that are far from the centroid 

will be associated with higher leverages and are considered to be influential 

in model building. Leverage is proportional to Hotellings T
2
 statistic and 

Mahalanobis distance measure but can be applied only on the regression 

models. The approach can be associated with a threshold, generally 2.5 times 

the average of the leverage that corresponds to p+1/n where p is the number 

of model descriptors while n is the number of training molecules. A query 

chemical with leverage higher than the warning leverage can be associated 

with unreliable predictions. Such chemicals are outside the descriptor space 

and thus be considered outside the AD [11-13]. 

H    =    X����XTX����
-1

XT
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Figure 2.7 shows the contour plots derived on both the simulated datasets 

using leverage approach. Based on the above-discussed threshold, the 

defined AD for the first dataset (Figure 2.7a) was in the form of an ellipsoid 

oriented in the direction showing maximum variance in the data. 

 

Figure 2.7  Contour plots derived for the simulated datasets implementing Leverage 

approach. First simulated dataset (2.7a), second simulated dataset (2.7b) 

The defined AD didn’t include the two isolated training samples and the 

prevailing issue of accounting for empty regions within the training space 

seems partially resolved here. At a first glance, both the isolated samples are 

clearly potential outliers in the training space. As a result, it would be 

reasonable to expect a minimum possible influence of such isolated samples 

on the resulting AD. The use of above-discussed statistically significant 

threshold excludes these two outliers and their surrounding descriptor space 

from the resulting AD, indicating that these isolated samples have no role to 

play in defining the interpolation space. Thus, the resulting AD was mainly 

surrounded around the extremities of the huge cluster. On the hand, the 

defined AD for the second simulated dataset (Figure 2.7b) resembled the AD 

defined with Euclidean and Mahalanobis distances using the centroid based 

approach.  

2.3.2 K-Nearest Neighbours based approaches 

This set of approaches is based on providing similarity measure for a new 

test molecule with respect to the molecules within the training space. The 

similarity is accessed by finding the distance of a test molecule from nearest 
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training molecule or its average distances from k nearest neighbours in the 

training set. If these distance values are within the user defined threshold, the 

test molecule with higher similarity is indicated to have higher number of 

training neighbours and therefore, is considered to be reliably predicted. 

Thus, similarity to the training set molecules is significant for this approach 

in order to associate a test molecule with a reliable prediction [9]. Two 

variants of the kNN-based approach were implemented. 

The first variant of the kNN-based AD approach [9, 19] was implemented by 

calculating average distances of all the training samples from their k nearest 

neighbours since the choice of thresholds didn’t follow any strict rules in the 

existing literature, the value corresponding to 95
th

 percentile in this vector of 

average distances was considered as general threshold. If the average 

distance of a test sample from its k nearest training neighbours was lesser 

than or equal to the threshold value, the test sample was retained within the 

AD. 

Usually for classification purposes where kNN-based approaches are quite 

commonly applied, a smaller number of nearest neighbours is preferred to 

avoid any sort of bias. In theory, this makes sense because a higher number 

of k neighbours could take into account training neighbours which may not 

be significant towards structural similarity. In the literature, a small number 

of neighbours like k = 3 or 5 are quite commonly used to implement different 

kNN-based approaches.  

Figure 2.8 provides with the contour plots derived for both the simulated 

datasets implementing three different distance measures. To derive the plots, 

the approach was implemented taking 5 nearest neighbours (k = 5) into 

account. The differences between the defined AD using different distance 

measures were clearer for the second dataset. The AD was more adapted to 

the shape of the clusters for Mahalanobis distances (Figure 2.8f) while some 

empty regions were included in the defined AD with the Manhattan distance 

(Figure 2.8e). 
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Figure 2.8  Contour plots derived for the first simulated dataset implementing k-Nearest 

Neighbours based approach. First simulated dataset: Euclidean (2.8a), Manhattan (2.8b), 

Mahalanobis (2.8c). Second simulated dataset: Euclidean (2.8d), Manhattan (2.8e), 

Mahalanobis (2.8f). 

The second variant of the kNN-based AD approach is a nearest neighbour 

method for probability density function estimation [20]. In this approach, the 

choice of k is crucial and is usually approximately equal to n
1/2

. 

In a p-dimensional space, let ( )kd xt  be the Euclidean distance from a test 

molecule xt to its k-th nearest training molecule. The dimensional volume of 
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the p-dimensional sphere having radius ( )kd xt  is given by ( )kV xt , then the 

nearest neighbour density estimator at the data point xt is given by: 

( ) ( )

/ /
( )

p

k p k

k n k n
f

V c d
= =

  

xt
xt xt

 
(2.2) 

Here, cp is the volume of the unit sphere in p dimensions. In simple terms, 

here the probability density function estimate is defined with a window 

width ( )kd xt . 

Being prone to the local noise, the overall estimates with this approach do 

not seem quite convincing. The approach suffers from the irregularities 

resulting due to the dependence of the resulting estimator on the ( )kd xt  

function [20]. 

 

Figure 2.9   Contour plots derived for the simulated datasets using Nearest Neighbour 

density estimator. 

Figure 2.9 provides with the contour plots for the simulated datasets 

implementing this density estimator using k = 5. The defined AD seems to be 

well localized around the data clusters excluding the isolated data samples in 

both the datasets. 

2.4 Probability Density Function Methods 

Considered as one of the most advanced approaches for defining AD, these 

methods are based on estimating the Probability Density Function (PDF) for 

the given data. This is feasible by both, parametric methods where the 

density function has the shape of a standard distribution (Gaussian or 
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Poisson distribution, for instance) and non-parametric methods which do not 

have any such assumptions concerning the data distribution. A main feature 

of these approaches is their ability to identify the internal empty regions. 

Moreover, if needed, the actual data distribution can be reflected by 

generating concave regions around the interpolation space borders [11-12]. 

However, there are also several drawbacks associated with this set of 

approaches, discussed later in this chapter. 

Generally these approaches are implemented by estimating probability 

density of the dataset followed by identifying Highest Density Region that 

consists of a known fraction (given as user input) from the total probability 

mass [11]. 

Let X be some random quantity with PDF f. Based on this function which 

actually describes the distribution of X, the probabilities associated with X 

can be obtained using the relation, ( ) ( )d  for all a < b
b

a
P a X b f x x< < = ∫ . 

Consider that some observed data points, assumed to be samples from an 

unknown probability density function are provided, then the estimate of the 

density function from these observed data can be constructed using density 

estimators [20].  

For the random variable X with density f, we can have 

( ) ( )
0

1
lim

2h
f x P x h X x h

h→
= − < < +  (2.3) 

Thus for a given h, based on the sample proportion falling within the 

interval, ( )P x h X x h− < < +  can be easily estimated. Given a weight 

function w, the naive estimator can be written as: 

�

1

1
( )

n
i

i

x X
f x w

nh h=

− 
= ⋅  

 
∑  (2.4) 

The above equation indicates that the density estimator was derived by 

placing a box of width 2h and height (2nh)
-1 

on each observation and later 
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the summation on all the observations was performed to obtain the final 

estimate [20].  

Replacing the weight function w with a kernel function K such that,  

( ) 1K x dx
∞

−∞
=∫ , the kernel estimator can be derived as: 

�

1

1
( )

n
i

i

x X
f x K

nh h=

− 
= ⋅  

 
∑  (2.5) 

where h is the window width, also referred to as smoothing parameter or 

bandwidth.  

Taking the analogy of a naive estimator being the construction of density by 

sum of boxes centred at different data points, a kernel estimator can be 

considered as sum of ‘bumps’ on different data points. Shape of such bumps 

is identified by the kernel function K while their width is decided by the 

window width h [20].  

The idea of defining the kernel estimator as the summation of bumps placed 

on different data points can be extended to the multivariate datasets. For a 

multivariate data set 1,..., n
x x , the resulting multivariate kernel density 

estimator with kernel K and window width h can be defined using the 

following equation: 

�

1

1
( )

n
i

i

f K
n h=

− 
= ⋅  

 
∑

xt x
xt  (2.6) 

where K(xt, x) is the kernel function for p-dimensional xt. K usually is a 

radially symmetric unimodal PDF, for instance a standard multivariate 

normal density function, defined as follows: 

( )
( )

( ) ( )
T

/2

1 1
, exp

22
i i ipp

K
h

 
= ⋅ − − − 

 ⋅
xt x xt x xt x

π
 (2.7) 

As can be seen in equation 2.6, a single smoothing parameter was used 

indicating that the kernel placed on all the data points will be equally scaled 
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in all the directions. Like for several other statistical procedures, in 

multivariate analysis pre-scaling the data could result quite useful as it will 

avoid getting extreme differences of spread in different coordinate directions. 

For the data scaling carried out, the standard kernel estimator in equation 

could be used without using different complicated variants usually involving 

more than one smoothing parameters [20]. 

Once the density estimation was carried out for all the training samples, the 

probability density value of the training sample corresponding to a cut-off 

percentile was considered as the threshold for AD definition. The test 

samples xt that were associated with a probability density lesser than this 

threshold were considered outside the model’s AD [5]. 

2.4.1 Gaussian kernels  

Among the multivariate kernel density methods which use the standard 

multivariate normal density function as the kernel function, the following 

three variants of Gaussian kernel estimators were implemented:  

a) Fixed Gaussian kernel  

‘Fixed’ indicates that with this kernel, the smoothing parameter/bandwidth h 

is constant over all training objects.  

For this kernel, the optimal bandwidth was calculated as follows [20]: 

( ) 1/( 4)

opt

p
h A K n

− +=  (2.8) 

where the constant A(K) in p dimensions was defined as: 

( ){ }
( )1/ 4

( ) 4 / 2 1
p

A K p
+

= +  (2.9) 

Finally, the kernel estimate of PDF was then derived using the equation 2.7.  

There are some drawbacks associated with this kernel method. Since the 

smoothing is constant, there are several chances of taking spurious noise into 

account in the estimates. Even in case the estimates were efficiently 
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smoothed, this could be compromised with the essential details in the 

distribution getting masked [20].  

b) Optimized Gaussian kernel 

Instead of using a constant smoothing parameter h, this is optimized by 

leave-one-out cross-validation taking into account the differences in standard 

deviation of the variables [21].  

The kernel estimate is derived as: 

  ( )
( )

2

2 2
1

1 1
, exp

22

p
j ij

i

j opt jopt j

xt x
K

h sh s=

 −
 = − ⋅
 ⋅⋅ ⋅
 

∏xt x
π

 (2.10) 

where sj is the standard deviation of the jth variable. 

The optimization procedure requires the estimate of the parameter h so that: 

( )
1

ˆmax
n

i

i

f
=

 
 
 
∏ x                        (2.11) 

where ( )ˆ
if x  is the probability density of ith sample in cross-validation. 

 

c) Variable Gaussian kernel  

With this kernel, smoothing is adapted to the local density of the data. The 

strategy towards the construction of estimate is quite similar to that with 

classical kernel estimate, however, allowing the scale parameter for bumps to 

vary from one point to the other. Moreover, flatter kernels will be allocated 

to the sparse regions within the data. For all the case studies discussed in this 

thesis, this kernel was implemented with a bandwidth calculated as the 

inverse function of the Euclidean distance to k-th neighbour [21]. 

Given kernel function K, bandwidth h, a positive integer k and ( )k
d xt  being 

the Euclidean distance between the test point xt from its k
th

 nearest training 

neighbour, the variable Gaussian kernel estimate was derived as follows: 
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( )
( )

( )
( )

2

22 2
1

1 1
, exp

22

p
j ij

i

j opt k j opt k j

xt x
K

h d s h d s=

 −
 = ⋅ − ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅   

∏xt x
xt xtπ

 (2.12) 

In this case, the window width on xt is proportional to the distance between 

xt and its k
th

 nearest neighbour; the flatter kernels will be associated with 

sparse data regions. The bandwidth decides the overall smoothing while its 

response to the very local detail will be depending upon the value of k. With 

this kernel, the estimate will inherit the local smoothing properties, like in 

the case of ordinary kernel estimator [20].  

Figure 2.10 provides with the contour plots derived for the both the 

simulated datasets implementing the three variants of Gaussian Kernel. For 

the first dataset, the AD defined in all the three cases were very much 

adapted to the shape of the cluster and like the distance-based approaches, 

the percentile approach to define thresholds left both the isolated samples 

excluded from the AD. The results derived with Fixed and Variable kernels 

converged to a great extent showing no clearly visible differences. The AD 

defined with Optimized kernel was slightly more adapted to the shape of the 

clusters. 
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Figure 2.10 : Contour plots derived for both the simulated datasets implementing three 

variants of the Gaussian kernel. First simulated dataset: Fixed Gaussian kernel (2.10a), 

Optimized Gaussian kernel (2.10b) and Variable Gaussian kernel (2.10c), Second simulated 

dataset: Fixed Gaussian kernel (2.10d), Optimized Gaussian kernel (2.10e) and Variable 

Gaussian kernel (2.10f). 
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2.4.2 Adaptive kernel methods  

Combining the features of kernel and Nearest Neighbours approach, this 

strategy constructs the kernel estimate at observed data points allowing the 

window width of kernels to vary from one point to another. There is a two 

stage procedure involved in determining if a given observation is associated 

within a lower density region [20]:  

In the first stage, a pilot estimate is constructed making use of other density 

estimation methods. This estimate provides a rough understanding of the 

density and in turn provides with a pattern of bandwidths that are used to 

construct the adaptive estimator in the second stage. 

Step 1: Pilot estimate � ( )if x  is found for all the i
th

 observation such that,

� ( ) 0if >x . 

Step 2: Local bandwidth factors 
i

λ  are defined as follows: 

� ( ){ }/
i i

f g
−α

λ = x  (2.13) 

where α  is called sensitivity parameter, such that 0 1α≤ ≤  and g is the 

geometric mean of the � ( )if x . 

Step 3: Adaptive kernel estimate with kernel function K and bandwidth h can 

be defined as: 

� ( )
1

1 1n
i

p
i i i

f K
n h=

 −
= ⋅ ⋅  

λ ⋅λ 
∑

xt x
xt  (2.14) 

Dependence of the bandwidth factors on the power of pilot density provides 

flexibility to the overall approach. When a higher power α is used, the 

method will be quite sensitive to the variations in the pilot density, whereas 

approach will be implemented as fixed width kernel approach when α is 

reduced to 0 [20]. For all the case studies discussed in this thesis, an adaptive 

kernel method was implemented with fixed Gaussian kernel as the pilot 

estimate and sensitivity parameter α equal to 1/2 [14,20]. 
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Figure 2.11  Contour plots derived for simulated datasets implementing the Adaptive kernel. 

First simulated dataset (2.11a), Second simulated dataset (2.11b) 

Figure 2.11 provides with the contour plot derived for the simulated datasets 

implementing the Adaptive kernel. The resulting interpolation space 

resembled to those derived with different variants of the Gaussian kernels. 

2.4.3 Triangular kernel 

For an observation xt in multidimensional space, this kernel can be 

determined as follows: 

( )
( ) ( ) ( ) ( )

T T
1 if 1

               

0 otherwise

i i i i

iK
 − − − − − < 

=  
  

x xt x xt x xt x xt
xt,x

 

  (2.15) 

 

Figure 2.12  Contour plots derived for simulated datasets implementing the Triangular 

kernel. First simulated dataset (2.12a), Second simulated dataset (2.12b) 

 

variable 1

v
a
ri
a
b
le

 2

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

variable 1

v
a
ri
a
b
le

 2

-1 0 1 2 3 4

-1

0

1

2

3

4

5

variable 1

v
a
ri
a
b
le

 2

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

variable 1

v
a
ri
a
b
le

 2

-1 0 1 2 3 4

-1

0

1

2

3

4

5

a) b) 

a) b) 



         2. Classical ways of characterizing the interpolation space 

30 

  

Figure 2.12 provides with the resulting contour plot for the simulate datasets 

implementing this kernel. Again the resulting AD for both the simulated 

datasets were quite similar to those defined using different variants of 

Gaussian kernels as well as Adaptive kernel.  

2.4.4 Epanechnikov kernel  

This is an optimal kernel to minimize the integrated mean errors. The 

multivariate Epanechnikov kernel is defined as [20]: 

( )
( ) ( ) ( ) ( ) ( )

T T11 1 1
2 1  if 1

 2

0 otherwise

p i i i i

i

c p
K h h

−  
+ − ⋅ − − ⋅ − − <  =   

 
 

x xt x xt x xt x xt
xt,x   

where cp is the volume of the unit p-dimensional sphere.                        (2.16) 

The bandwidth h has been calculated as [20]: 
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Figure 2.13  Contour plots derived for simulated datasets implementing the Epanechnikov 

kernel. First simulated dataset (2.13a), Second simulated dataset (2.13b) 

The contour plot for the simulated dataset implementing this kernel is shown 

in Figure 2.13. For the first dataset, the defined AD remained localized 

around the cluster while for the second dataset, the AD enclosed the entire 
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training space taking into account empty regions like with range and 

geometric based approaches. 

Probability density distribution methods are advanced and but their 

efficiency is also associated with disadvantages of different kernels. For 

instance, kernel methods are usually associated with under- smoothing the 

tails while the nearest neighbourhood approach tries to overcome this issue 

however, by over-smoothing the tails. The adaptive kernel method 

overcomes such issues, however being adaptive to the local density.  

All the classical AD methodologies discussed in this chapter will be further 

implemented on several QSAR models considered as case studies later in 

this thesis work. The results derived on these case studies will allow a further 

understanding of these discussed methodologies, as well as their advantages 

and disadvantages. It will be also interesting to see if the similarities in the 

approaches used to characterise the interpolation space is also evident from 

the common set of test molecules being excluded from the model’s AD. 



 

32 

 

Chapter 3  

 

 

 

A novel k-Nearest Neighbours based Applicability 

Domain evaluation 

 

 
Although existing literature discusses several approaches towards 

defining the Applicability Domain (AD) of QSAR models, an optimal 

approach has yet not been recognized. This chapter proposes a novel 

approach that defines the AD of QSAR models taking data distribution 

into account and derives a heuristic decision rule exploiting the k-

Nearest Neighbours (kNN) principle. The proposed approach is a three 

stage procedure as a part of which, training thresholds are allocated, 

criterion deciding if a given test sample should be retained within the 

AD is defined and finally, the reliability in the derived results is 

reflected by taking model statistics and prediction error into account. 

 

 

3.1 Background and motivation 

As discussed in the previous chapter, several approaches were proposed in 

the past years to define the AD of QSAR models. All these approaches were 

associated with their own advantages and limitations [5, 11-14]. From time 

to time, several approaches were proposed that were aimed to be more 

efficient or were thought to overcome several limitations of the existing 

approaches.  

Due to its simplicity and easy implementation, k-Nearest Neighbours had 

been a preferred choice for several proposed QSAR studies [4,9,19,22-26]. 

The kNN principle basically reflects upon the structural similarity of a test 
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sample to the training samples used to build that model. In theory, the 

distance of a query sample is considered from its k closest data points in the 

chemical space. Lower distance values correspond to a higher similarity, 

while the increasing distances signify higher levels of structural mismatch. 

The k value plays a significant role in defining how constraint the approach 

will be and thus, it can be referred to as the smoothing parameter.  

This chapter proposes a new heuristic approach towards defining the AD of 

QSAR models. The basis of this novel strategy is inspired from the kNN 

approach and adaptive kernel methods for probability density estimation 

(Kernel Density Estimators, KDE) [27]. In the classical kNN approach for 

AD evaluation [9,19], average distances of all the training samples from their 

k nearest neighbours are calculated and used to define a unique threshold to 

decide if a test sample is inside or outside the model’s AD (for example, 95
th

 

percentile). Moreover, in the framework of the probability density function 

estimation, the nearest neighbour method provides density estimates 

depending on the Euclidean distance to the k-th nearest data point [20]. 

Following the same concept, the proposed method tries to integrate the kNN 

principle with the salient features of adaptive kernel methods [27], which 

define local bandwidth factors corresponding to the training data points and 

use them to build the density estimate at a given point. 

The novelty of the kNN based AD approach proposed here lies in the overall 

strategy that is properly executed in a three-stage procedure to encapsulate 

and reflect upon several significant aspects towards model validation. 

Moreover, some features common to most of the AD approaches were dealt 

differently with this approach; for instance, rather than defining a general 

threshold as in all the distance-based approaches, each training sample in this 

approach was associated with its individual threshold; in order to find an 

optimal smoothing parameter k, this approach performed a k-optimization 

procedure based on Monte Carlo validation; additionally, model’s statistical 

parameters and other relevant aspects were dealt simultaneously to reflect 

upon the reliability in the derived results. 
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3.2 Methodology 

A stepwise execution of the following three stages characterises the 

workflow of this approach: 

1) defining thresholds for training samples 

2) evaluating AD for new/test samples 

3) optimizing the smoothing parameter k  

To allow a better interpretation of the proposed approach, results on both the 

two-dimensional simulated datasets (introduced in Figures 2.1 and 2.2 of 

Chapter 2) will be considered throughout the major part of this discussion 

and wherever applicable.  

3.2.1 Defining thresholds for training samples 

Thresholds have a great influence in characterising the AD for reliable 

predictions; a test sample that exceeds the threshold condition is associated 

with an unreliable prediction.  

Like the adaptive kernel methods, instead of defining a general unique 

threshold as seen with several classical AD approaches, the proposed 

approach allocates a set of thresholds corresponding to the various training 

samples. 

For a given value of k, threshold allocation process can be summarised as 

follows: 

a) The distances of each training molecule from the remaining n – 1 

molecules are calculated and ranked in increasing order, n being the total 

number of training molecules. This will result in a n x (n -1) neighbour 

table D; an entry Dij of the table corresponds to the distance of the i-th 

molecule from its j-th nearest neighbour: 

1 2 , 1i i i nD D D −≤ ≤ ≤…  
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b) The average distance of each i-th molecule from its k nearest neighbours 

is calculated considering the first k entries in i-th row of the neighbour 

table: 

( ) ( ) ( )1
, 1 1 and 1

k

ij

j

i i i

D

d k where k n d k d k
k

=
= ≤ ≤ − ≤ +

∑
        (3.1) 

A vector ( )kd  of average distance values is then derived considering all 

the molecules in the training set. 

c) Next, a reference value (from now on referred as Ref Val), ( )d kɶ

 
is 

determined as follows: 

   ( ) ( )( ) ( )( ) ( )( )3 1 5 3 1d k Q k . Q k Q k = + ⋅ − d d dɶ            (3.2) 

where, ( )( )1Q kd  and ( )( )3Q kd  are the values corresponding to the 25
th

 

and 75
th

 percentiles in the vector ( )kd , respectively [28]. 

d) Next, the ordered distances of each i-th training sample from all other n - 

1 training molecules are compared with the Ref Val. If the distance value 

of the i-th molecule from its given j-th training neighbour (where 

1 1j n≤ ≤ − ) is less than or equal to the Ref Val, then that distance value is 

retained, otherwise is discarded. The number Ki of neighbours satisfying 

this condition, minimum zero and maximum being n – 1, defines the 

density of the i-th sample neighbourhood: 

                ( ){ }: : 1 1
i ij

K D d k j ,n≤ ∀ −ɶ                               (3.3) 

e) Finally, each i-th training molecule is associated with a threshold ti which 

defines the width of its neighbourhood as: 

1

iK

ij

j

i

i

D

t
K

=
=

∑
                                               (3.4) 
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If no distance value was retained for a given i-th training molecule (Ki = 0), 

then its threshold ti would be theoretically settled to 0, but a pragmatic 

solution is to set it equal to the smallest threshold of the training set. 

 

Figure 3.1 First simulated data set. Thresholds ti vs. number of training neighbours Ki plot 

(k = 12). 

The plot in Figure 3.1 provides with an overview of the thresholds for all the 

50 samples in the simulated dataset. As expected, most of the training 

samples within the cluster (for instance, samples 2, 33 and 39) were 

associated with higher Ki values. On the other hand, obvious potential 

outliers (samples 49 and 50) had their thresholds equal to 0 since they 

couldn’t satisfy the threshold criterion even for a single training neighbour 

(i.e. Ki = 0), thus no distance values contributed to their threshold 

calculation. Nevertheless, they were associated with the minimum threshold 

equal to 0.42, i.e. the threshold of sample 43. 

3.2.2 Evaluating AD for new/test samples 

Until this point, each training molecule was associated with its individual 

threshold. The next step will be to characterise the AD which usually relies 

upon a set of conditions that will decide if a given test molecule can be 

associated with a reliable prediction or not.   

The criterion used by this approach to associate a given test sample to be 

within the domain of applicability can be summarised below. 
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Given a test molecule, its distance from all the n training molecules is 

calculated and simultaneously, compared to be less than or equal to the 

thresholds associated with each training molecule. If this condition holds true 

with at least one training molecule, the test molecule will be considered 

inside the domain of applicability for that model. Otherwise, the prediction 

for that test sample will be rendered unreliable.  

More formally, given the training set TR, for each test molecule j, the AD 

decision rule is: 

     :
ij i

j AD iff i TR D t∈ ∃ ∈ ≤                          (3.5) 

where Dij is the distance between the j-th test molecule and the i-th training 

molecule and ti is the individual threshold of the latter. In addition, each 

test/new molecule will be associated with the number Kj of nearest training 

neighbours for which the previous condition holds true. This number can be 

assumed as a measure of potential prediction reliability; indeed, high values 

of Kj indicate that the new molecule falls within a dense training region of 

the model’s space, while low values of Kj denote that the new molecule still 

belongs to the model’s space, but located in sparse training regions. Kj equal 

to zero rejects the molecule as it being outside the model’s AD since no 

training neighbours are identified. 

 

Figure 3.2 : Contour plot to demonstrate how the AD was characterised for the first 

simulated dataset. Metric used: Euclidean distance;  k  = 12. 
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Figure 3.2 provides with the contour plot for the simulated dataset derived 

projecting several data points enough to fill the training space. Thresholds 

were calculated using 12 nearest neighbours and Euclidean distance. This 

choice of k = 12 nearest neighbours was based on the results derived 

performing an internal k-optimization, discussed later in this article. The 

space enclosed around the cluster represented as black line indicates that all 

the data points within this enclosed region are inside the AD. Thus, this 

region reflects in a way how the AD was characterised for this two-

dimensional dataset. Area of this enclosed region tends to expand or shrink 

depending upon the number of nearest neighbours used for threshold 

calculation. 

As explained earlier, the extreme outliers in the training space will be 

associated with the number Ki of neighbours equal to zero and the lowest 

possible threshold in the training set. Consider the sample 49 from the 

simulated dataset which is an extreme outlier with its threshold equal to 0.42. 

If there is a test sample that seems to be quite in the vicinity of this potential 

outlier within the descriptor space, the test sample will be associated with an 

unreliable prediction since its distance from sample 49 will likely exceed the 

small threshold. Now, consider a case, where the descriptor values for 

another test sample exactly overlap or are very similar to those for this 

potential outlier. In this situation, the distance of that sample from the outlier 

will be less than the threshold and thus it will be considered within the 

domain of applicability. In theory, this is not wrong because the potential 

outlier is still a part of the training space. Practically, the approach retains all 

the training samples to characterize the AD but minimizing the role of 

potential outliers in doing so. That’s the reason why the first test sample was 

excluded from being reliably predicted while the second sample was not.  
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Figure 3.3  An illustration of two test samples towards AD criterion of the proposed 

approach for the simulated dataset. 

However, for the latter the number Kj of nearest training neighbours will 

likely be equal to one indicating that its prediction has some degree of 

uncertainty. In conclusion, there exists a relation between the defined AD 

and the impact of training samples in characterising it based on their 

threshold values.  

3.2.3 Optimizing the smoothing parameter k 

Another important aspect is concerning the choice of an appropriate 

smoothing parameter k, whose theoretical range is between 1 and n-1. It can 

be seen from the AD defined for the simulated dataset using different k 

values in Figure 3.4, very low k values will restrict the domain of 

applicability in a very strict manner as compared to the AD derived opting 

for larger k values. This is because, an opted k value will have a direct 

impact on the threshold calculations which in turn can make it more rigid or 

easier for test samples to satisfy the threshold criterion. The strategy 

implemented in this thesis to select an appropriate k value was performed by 

Monte Carlo validation in ‘n’ iterations, maximizing the percentage of the 

test samples considered within the AD, i.e. satisfying AD criterion (Equation 

3.5). 
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Figure 3.4  Impact of different k values on the defined AD for simulated dataset. a) k =1, b) 

k =5, c) k =15 and d) k =25. 

To perform this validation, in each iteration,  20 percent of the training 

samples were randomly chosen as the test set and the above discussed AD 

procedure was executed using a range of k values, defined by the user. 

Percentage of test samples retained inside the model’s AD for each k value in 

every iteration was recorded. Box-and-whisker plots (box plots) were 

produced to get an overview of all these derived results. For instance, 

consider the plot in Figure 3.3 derived for the simulated dataset showing 

percentage of test samples retained within the AD with different k values 

(optimization carried out with 20% of samples in the test set and 1000 

iterations). 
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Figure 3.5  First simulated data set. Box-and-whisker plot of test samples (%) retained 

within the AD for different k values during k-optimization. 

Figure 3.5 shows that the spread of the box plots for initial k values is quite 

large. This may have resulted due to the impact of restricted training 

thresholds that excluded several test samples from the AD. With an increase 

in k values, the spread narrowed, however the outliers were still present until 

k = 17. After this point, the box plots remained unchanged throughout the 

plot with no outliers.  Similar observations were derived from the mean line 

plot which showed a significant rise initially followed by a stable curve until 

the first half of the k values. The plot didn’t show any major changes for the 

second half of the k values.  In order to avoid very high k values good 

enough to unnecessarily expand the defined AD, a k value of 12 was opted as 

appropriate k for this dataset. The plots dealt earlier (Figures 3.1 and 3.2) for 

this dataset were thus derived using this opted k value. 

Median quartile in the middle of the box (marked in red) can be referred for 

all the k values to get a hint about how many test samples were retained on 

average during the optimization process for a given k value. About their 

usefulness in the proposed AD approach, box plots showing limited spread 

and allowing majority of test samples to be retained within the AD can be 

favoured and their corresponding range of k values can be considered to 

finally opt for the most appropriate k. Additionally, a line plot is integrated in 
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the same figure indicating the mean percentage of test samples that were 

considered within the AD for each k value. A simultaneous interpretation of 

both these plots can make it easier for a user to decide upon an appropriate k 

value.  

It was concluded that optimization of k can be a time-demanding procedure 

especially in the case of a huge number of samples, but it was also observed 

that this approach is quite insensitive to the smoothing parameter k, except 

for very small k values which led to the results influenced by local noise. 

Therefore, for many applications the optimization of the smoothing 

parameter can be avoided and reasonable results can instead be obtained by a 

fixed k value empirically calculated as 1/3
n . 

3.2.4 An overview of results on other simulated datasets 

The simulated dataset discussed so far was used to facilitate a better 

understanding of how the proposed approach works. This part of the chapter 

provides an overview of how using the same approach the resulting AD was 

defined on other simulated datasets.  

 

Figure 3.6  Second simulated data set. Contour plot to demonstrate how the AD was 

characterised. Metric used: Euclidean distance;  k  = 4. 

The contour plot for the AD defined on second simulated dataset (introduced 

in Figure 2.2 of Chapter 2) with the new approach is shown in Figure 3.6 

which was derived using k = 4. For range and geometric based approaches, 
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the isolated sample (49) was considered inside but taking into account 

unnecessary descriptor space between the clusters, while for the distance and 

probability density distribution approaches, this sample was considered 

outside the AD approach due to the percentile-based threshold. With the 

proposed approach, all the clusters were enclosed in their own interpolation 

space. Since sample 49 was associated with the minimum training threshold, 

a small descriptor space around it was considered within the AD indicating 

that a test sample extremely similar to sample 49 could be considered as 

reliably predicted.  

 

Figure 3.7  Scatter plot for the third simulated dataset. 

Figure 3.7 provides with the scatter plot for an additional simulated dataset 

considered to better evaluate the proposed AD approach. As shown in the 

figure, this dataset has a cluster of data points in the middle and four isolated 

samples surrounding it. It could be easily interpreted that with several 

classical approaches like convex hull or bounding box, a lot of unnecessary 

interpolation space could be taken into account considering the four isolated 

samples within the model’s AD.  
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Figure 3.8 Third simulated data set. Contour plot to demonstrate how the AD was 

characterised. Metric used: Euclidean distance;  k  = 4. 

Figure 3.8 provides with the contour plot for this simulated dataset. Since the 

potential outliers with this approach are associated with minimum training 

threshold, a small descriptor space surrounding these isolated samples was 

considered inside the model’s AD. As expected, all the clustered data points 

were included within the common AD space. The above contour plot was 

derived using k = 4.  

The overall strategy for this novel approach in defining the AD will be 

clearer when the performance of this approach will be further evaluated later 

in this thesis using several QSARs from the existing literature as the case 

studies. The results derived with this approach will be also compared with 

those derived using several other existing AD approaches discussed earlier in 

Chapter 2. 
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Chapter 4 

  

 

 

Outlier detection from an Applicability Domain perspective 

 

 

 
Presence of potential outliers in the training space can have a huge 

impact on characterizing the interpolation space and the resulting 

Applicability Domain (AD) may not be restrictive enough to exclude 

unreliable test molecules. On the other hand, the test molecules 

detected as outliers when projected on the training space can hint for 

their prediction being unreliable and thus can be excluded from the 

model’s AD. This chapter introduces a novel Mahalanobis distance 

measure (namely, a pseudo-distance) termed as Locally-centred 

Mahalanobis distance and discusses its usefulness towards outlier 

detection. The proposed outlier detection approach hints some useful 

alerts towards the presence of test molecules that could be rendered as 

unreliable after AD evaluation. This chapter implements this newly 

derived distance matrix to propose the second novel approach towards 

evaluating for a model’s AD. 

 

 

4.1 Introduction and the scope of this study  

Outliers represent the observations that fail to follow the general pattern of 

the majority of data samples [29]. Thus, it is critical to detect and 

appropriately treat such anomalous observations, contributing to undesired 

performance degradation, or, alternatively, suggesting unexpected but 

interesting patterns. In recent years, there had been a growing attention 

towards dealing with outliers since they can highly impact the variance and 
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correlation between variables and as a result, several approaches addressing 

outlier detection have been proposed in the literature [30]. 

Several supervised and unsupervised-learning methods have been proposed 

to address outlier mining [31]. Most of the proposed techniques to deal with 

outliers were either diagnostic or robust approaches [32,33]. Several classical 

techniques performed well, provided the given set of data contained only a 

single outlier, however, their inefficiency emerged while dealing with 

multiple outliers [34]. Increasing dimensionality of data adds to the 

complexity of detecting such outliers. Lacking visual perception for data 

with more than two dimensions, restricted the reliable use of such classical 

approaches only for two-dimensional data [29]. Moreover, masking and 

swamping considerably restricted the usefulness of such classical approaches 

towards detection of multiple outliers in calibration. Many times the 

presence of some outliers can somehow mask the detection of other outliers. 

As a result, some outliers are wrongly identified as normal samples. This 

phenomenon is referred to as masking. On the contrary, swamping refers to 

the cases where the presence of a subset of observations makes normal 

samples being incorrectly identified as potential outliers [32, 33]. 

Several new and improved detection approaches emerged from time to time 

and were attempting to overcome major limitations of classical outlier 

detection techniques, however, this domain of data exploration perhaps may 

always leave a room for further improvement towards developing an 

approach that can tackle the increasing data complexity without comprising 

upon the quality of detection accuracy.  

The outliers detected amongst molecules constituting the training space can 

be quite interesting from an AD perspective. The training molecules detected 

as outliers can have a huge impact on the interpolation space defined by 

different AD approaches. This impact of training outliers further depends 

upon the AD approach being implemented. For instance, range-based 

approaches are highly sensitive to such outliers and thus their defined 

interpolation space may be unnecessarily broadened accounting for several 

empty regions in the descriptor space. On the contrary, the Probability 
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density distribution-based approaches as well as the novel kNN based AD 

approach (discussed earlier in Chapter 3) will try to minimize the impact of 

such potential outliers in defining the interpolation space. Later, test 

molecules considered as extreme outliers when projected on the training 

space could be more likely to be unreliably predicted upon AD evaluation. 

This implies that the outlier detection approaches can be quite useful in 

determining the test molecules that are extreme outliers when projected on 

the training space. This resulting subset of test molecules can be excluded 

from the model’s AD, rendering them unreliably predicted in the model’s 

descriptor space. 

In this chapter, a new distance measure, called locally-centred Mahalanobis 

distance, based on the covariance matrix centred on each dataset molecule, is 

introduced and its salient properties are discussed. Two new parameters, 

remoteness and isolation degree derived from the resulting pairwise distance 

matrix are introduced, in order to better explore the isolation of the 

molecules in their local and global space. The information corresponding to 

these new parameters when plotted can allow the analyst to better explore 

several interesting features of the data, particularly, in terms of detecting 

those molecules that are quite diverse from the major pattern followed by the 

data [35]. Later, the novel distance measure can be calculated for the test 

molecules with respect to the training set molecules. The resulting 

remoteness and isolation degree values for test samples can be projected 

along with those for the training set molecules. Provided that the thresholds 

for training remoteness and isolation degree are defined, test molecules 

associated with values for these parameters exceeding their thresholds can be 

excluded from the model’s AD. The performance of this new outlier 

detection approach towards AD evaluation is better explained taking into 

account the results derived on two-dimensional simulated datasets introduced 

earlier (Figures 2.1 and 2.2) in Chapter 2. Later, the performance of this 

novel outlier detection approach will be further evaluated considering several 

case studies later in this thesis.  
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4.2 Definition of the Locally-Centred Mahalanobis distance  

Let the data matrix X be comprised of n molecules and p descriptors, defined 

as: ( )
T

T T T

1 2
, , ,

n
=X x x x… , where 

ix  are column vectors representing the n 

observations (i = 1, 2,…, n).  

The data are assumed to be independently sampled from a multivariate 

normal distribution Np(μ, Σ). A general measure of squared distance from an 

observation xi to the centroid of the p-dimensional space μ, for i = 1,.., n, can 

thus be written as follows: 

( ) ( )
T2

i i id = − ⋅ ⋅ −x μ M x μ
 (4.1) 

where M is a p x p symmetrical matrix. If M = ΣΣΣΣ-1
 where ΣΣΣΣ is the population 

covariance matrix, the squared Mahalanobis distance is obtained as: 

( ) ( )
T2 1

i i id
−= − ⋅ ⋅ −x μ Σ x μ

 (4.2) 

These distances are distributed according to 2

pχ  and if the parameters μ and 

Σ are estimated by the arithmetic mean x  and the molecule’s covariance 

matrix ( )( )
T

1

1

1

n

i i

in =

= ⋅ − −
−
∑S x x x x  respectively, the (estimated) squared 

Mahalanobis distances are: 

( ) ( )
T2 1

i i iMD
−= − ⋅ ⋅ −x x S x x

 (4.3) 

The distribution is given by 
2

2( 1) 1
( , )

2 2
i

n p n p
MD Beta

n

− − −
∼ , (e.g., see 

reference [7]).  If S and 
ix are independent, then 2

,
( 1)

i p n p

n p
MD F

n p
−

−

−
∼ . 

Now, if a vector ∈v pR is selected in the p-dimensional space, the covariance 

matrix, centred at v, denoted by S(v) ,can be calculated as: 

( )
T

1

1
( )( )

1

n

i i

in =

= ⋅ − −
−
∑v

S x v x v
 (4.4) 

Then, it can be easily verified that, 
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( ) ( )( )
T

1

n

n
= + ⋅ − −

−
v

S S x v x v
 (4.5) 

Finally, the squared Mahalanobis distances considering v as the space centre 

can be derived as: 

( ) ( ) ( )
T2 1

v
( , ) 1, ,i iMD i i n

−= − ⋅ ⋅ − =v x v S x v …
 (4.6) 

If the above mentioned vector v is now replaced by an observation xj, for j = 

1,..., n, the new locally-centred squared Mahalanobis distance between 

observations i and j is defined as: 

( ) ( ) ( )
T

2 1( , ) −= − ⋅ ⋅ −x x S x xL i j i jj
MD i j

 (4.7) 

where S(j) is the covariance matrix centred on the j-th observation. 

It should be noted that the classical covariance matrix S, being centred on the 

arithmetic mean vector, minimizes the data variance, while, the new defined 

locally-centred covariance matrix encodes different information, data 

variance depending on the selected centre. Thus, the new distance measure is 

more informative than the classical Mahalanobis distance, which considers 

only the arithmetic mean as the data centre. 

In order to obtain distances that are independent of the number of descriptors 

p, the distance values can be divided by p, thus obtaining locally-centred 

average squared Mahalanobis distances: 

                 ( )
( )

( ) ( ) ( )
2

2
11

1
L

L i j i jj

MD i, j
MD i, j i, j , ,n

p p

− = = ⋅ − ⋅ ⋅ − = x x S x x …                (4.8)      

Hereinafter these average distances will be considered, for the sake of 

simplicity, they will be often shortly referred to as locally-centred squared 

Mahalanobis distances, still using the symbol
2

LMD . 

4.2.1 Salient features of the novel distance measure 

There are two important key aspects related to this novel distance. Like the 

distances derived using the classical covariance matrix, the locally-centred 
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Mahalanobis distances are invariant to any sort of variable scaling. Secondly, 

unlike the classical Mahalanobis distance, the resulting object-centred 

distance is asymmetric and consequently is a pseudo-distance; indeed, the 

distance between two observations i and j depends on whether the selected 

centre is i or j:   

( ) ( )2 2

L L
MD i, j MD j ,i≠                                    

 (4.9) 

This asymmetry is accounted due to the presence of all other observations 

and their resulting overall influence in deriving the distances, thus reflecting 

the significance of information retrieved from the locally-centred covariance 

matrix. 

The asymmetry between ( )2

L
MD i, j and ( )2

L
MD j,i seems to have a significant 

meaning. In fact, a higher value of ( )2

L
MD i, j in contrast with a corresponding 

lower value for ( )2

L
MD j,i  indicates that the molecule i belongs to a relatively 

denser region with respect to the molecule j, which appears to be more 

isolated. This consideration can be further supported by the fact that, when j 

is isolated being the centred object, it shows a higher variance than the case 

when i is the centred molecule, which unlike the earlier, is surrounded by 

several molecules in its vicinity. As seen from the way these locally-centred 

Mahalanobis distances are derived, the variance is calculated as the 

reciprocal in the distance formula and as a result, j tends to seem closer to i, 

while on the contrary, molecule i with a lower variance tends to seem 

comparatively further distant from j. Usually, the molecules with lower 

variance can be thought of being either located in a cluster or surrounded by 

several similar molecules in their vicinity.  

The variable space based on Mahalanobis distances calculated using the 

classical covariance matrix is estimated by an ellipsoid (or hyper-ellipsoid), 

while in the case of locally-centred Mahanalobis distances, the variable 

space is defined by a family of ellipsoids (or hyper-ellipsoids) due to the 

multi-centred approach. Thus, a more data-driven shaped descriptor space is 

determined using this novel distance measure. 
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4.3 Remoteness and Isolation degree plot 

It is quite easy to interpret the significance of columns and rows in the pair-

wise distance matrix 
2

LMD  resulting from the novel average locally-centred 

squared Mahalanobis distances. In fact, each j-th column constitutes the data 

centre and represents how that j-th molecule "globally perceives" each i-th 

molecule, also taking into account the overall influence of all the other 

molecules, while each i-th row represents how that i-th molecule is "globally 

perceived" by all the other molecules.  

Each j-th column of the 
2

LMD  matrix contains information about the 

distances of all other i molecules from the j-th molecule being the centre. 

The minimum value of a j-th column can be taken into account to represent 

the squared distance of the j-th molecule from its nearest neighbour; this is 

termed as Isolation degree (Idg): 

                            ( )2min
j i L ij

Idg i j = ≠ MD
                                 (4.10) 

Similarly, each i-th row of the 
2

LMD  matrix contains information about the 

squared distances of the i-th molecule as it is perceived from all the other 

molecules. Thus, the average squared distance value for each i-th row is 

taken into account and termed as Remoteness (Rem): 

         

2

1

1

n

L ij
j

iRem
n

=

  
=

−

∑ MD

  
 

             

  (4.11) 

The values of remoteness can range from a minimum greater than zero and a 

maximum equal to (n-1)/p, while isolation degree for any given molecule 

remains localized between 0 and 1.  It should be also noted that: 

                           
( )

2

1 11 1
1

= ==

  
= =

⋅ −

∑∑∑ MD
n nn

Li ij
i ji

Rem

n n n  
        (4.12) 

i.e., the average value of the remoteness vector or, in other words, the 

average value of the matrix 2

L
MD  elements is equal to one. Then, the 
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remoteness could be interpreted as the influence that each molecule exerts 

over the covariance structure of the data, i.e. the values significantly larger 

than one identify the most influent molecules. 

4.3.1. Usefulness towards outlier detection 

The remoteness highlights objects which are far from the bulk of the 

remaining objects, i.e. they can be considered as classical outliers in the 

selected variable space; the Isolation degree detects a different kind of 

“anomalous” objects, i.e. those objects that, although located within the 

variable space, are isolated from the other ones or, in other words, these 

objects are surrounded by objects not so near. Therefore, a scatter plot of 

Remoteness vs. Isolation degree, called RI plot, for the data set in analysis 

can be a useful tool for exploratory purposes. 
 

The thresholds to detect remote and isolated samples, for the two 

distributions of remoteness and isolation degree, are defined as the upper 

“fences” in the box & whisker plots [28]: 

                          
( )3 3 11 5threshold Q . Q Q= + ⋅ −

               (4.13) 

where Q1 and Q3 are the first and third quartiles for remoteness and isolation 

degree values, respectively, and their difference is the interquartile range. 

To better evaluate the role of remoteness and isolation degree towards 

potential outlier detection, the results for both the simulated data sets 

introduced in Chapter 2 were analysed.  As mentioned earlier, the first 

dataset consists of a cluster of 48 data samples and two additional samples 

(49 and 50) quite distant from each other as well as from the main sample 

cluster (Figure 2.1) while the second dataset had its data samples roughly 

divided within four clusters and a single data sample (49) localized more or 

less between these clusters (Figure 2.2). 

The locally-centred squared Mahalanobis distances were calculated for the 

two simulated and the object-oriented pair-wise distance matrix 
2

LMD  was 

derived. The average distance values from each row and the minimum 

distance values from each column were retrieved from this distance matrix to 
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derive the remoteness and isolation degree vectors, respectively. The values 

of these two parameters were used as the point coordinates of all the data 

samples in the RI plot. 

Thresholds for both remoteness and isolation degree were calculated 

according to equation 4.13 and reported in the RI plots by red lines. The data 

samples associated with very high values for remoteness were classified as 

outliers of first type being far from the variable space defined by the bulk of 

the data, i.e. remote samples; the data samples associated with high values of 

isolation degree were classified as outliers of second type, they being 

isolated from the other samples in spite of their position within the variable 

space, i.e. isolated samples.  

The RI plot obtained by the locally-centred Mahalanobis distance for first 

simulated dataset is shown in Figure 4.1. As expected, two data samples 49 

and 50 were highly isolated from the cluster and far from the bulk of the 

data. Both these data samples were associated with high values for 

remoteness and isolation degree which clearly indicated that they are quite 

isolated in their local and global spaces. Moreover, data sample 27 was 

associated with a higher value of isolation as compared to the other samples 

in that cluster. 

    Figure 4.1  RI plot for the first simulated data set 
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A careful observation of the scatter plot in Figure 2.1 indicates that sample 

27 is within the extremities of the cluster as well as no other data samples 

from the cluster are very closely located in its vicinity. This indicates that the 

new approach is quite sensitive to the isolation of the samples 

Figure 4.2  RI plot for the second simulated data set. 

The second data set used as case study was a two–dimensional simulated 

data set introduced in chapter 2 with data samples roughly divided within 

four clusters and a single data sample (49) localized more or less between 

these clusters. The scatter plot of this data set (Figure 2.2) indicates this 

isolated sample clearly being a potential outlier; however, it was also 

interesting to see how the outlier detection techniques were able to analyse 

this data. 

As shown in Figure 4.2, the novel outlier detection approach was able to 

clearly identify sample 49 as a second type outlier based on its extreme value 

for isolation degree. Remoteness for the data samples was not extremely high 

for any specific data sample and then no first type outliers are detected. 

Samples 17, 30 and 32 that were not very closely located to their nearest of 

the four clusters were also identified with higher values of isolation degree.  
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4.4 Implementing the novel approach towards AD evaluation 

So far, the usefulness of remoteness and isolation degree was explored 

towards outlier detection. As pointed earlier, if these new matrix parameters 

can be calculated also for test samples and simultaneously projected with 

those for the training samples, the resulting plot could be quite useful to 

evaluate if the test samples can be reliably predicted or not. The test samples 

exceeding the defined training thresholds for remoteness or isolation degree 

or both of them can be excluded from the model’s AD.  

To implement this strategy for AD evaluation, remoteness and isolation 

degree of the test samples were determined as follows: 

For a given test set Xt with m observations, the remoteness of the test sample 

xti was derived by calculating its locally-centred Mahalanobis  distance from 

each training observation xj centering at xj, such that  j = 1,..., n. and then 

finding the mean of the resulting distance vector: 

( )
( )

( ) ( ) ( )
2

T2
11

1
L

L i j i jj

MD i, j
MD i, j j ,...,n

p p

− = = ⋅ − ⋅ ⋅ − =  
xt x S xt x                          (4.14) 

where ( )
T

1

1
( )( )

1

n

i j i jj

in =

= ⋅ − −
−
∑S x x x x  

On the other hand, the isolation degree of the test sample xti was derived by 

calculating its locally-centred Mahalanobis distance from each training 

observation xj centering at the i-th test object xti and then finding the 

minimum value from the resulting distance vector: 

( )
( )

( ) ( ) ( )
2

T2
11

1
L

L j i j ii

MD j,i
MD j,i j ,...,n

p p

− = = ⋅ − ⋅ ⋅ − =  
x xt S x xt                          (4.15) 

where, ( )
T

1

1
( )( )

n

j i j ii
jn =

= ⋅ − −∑S x xt x xt   

 

 

The test molecules exceeding the remoteness and isolation degree thresholds 

in equation 4.13 can be excluded from the model’s AD. 

Considering these definitions for remoteness and isolation degree for training 

and test molecules, contours plot was derived by projecting several test 

samples enough to fill the training space of both the simulated datasets. 
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                        Figure 4.3  AD contour plot for the first simulated dataset 

 

Figure 4.3 provides with the contour plot for the first simulated dataset. The 

defined interpolation space consisted of all the test samples that had their 

remoteness and isolation degree values below the defined thresholds. The 

AD seems quite adapted to the shape of the data cluster which was not so 

clearly interpretable with other classical approaches. Moreover, the choice of 

slightly higher thresholds for test samples is quite visible in the plot.  

Figure 4.4 provides with the contour plot for the second simulated dataset. 

The defined interpolation was mainly concentrated around the four clusters. 

Due to the choice of thresholds, the defined AD seemed slightly extended 

around the cluster’s extremities. Like in the case of first novel AD approach, 

this approach also considered the descriptor space around the isolated sample 

(49) within the defined AD.  
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                 Figure 4.4   AD contour plot for the second simulated dataset 

Both the simulated datasets were simpler in dimensions and were mainly 

chosen to provide with a better understanding of the proposed approach 

towards AD evaluation. The potential of this novel approach will be further 

clearer while deriving the AD for several multidimensional case studies later 

in this thesis.  
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Chapter 5  

 

 

 

Case studies 

 

 
This section is entirely dedicated towards implementing the already 

discussed classical and novel AD approaches on several QSAR models 

from the existing literature. Each case study is initially introduced 

highlighting the five major OECD principles for model validation, 

followed by discussing the results derived evaluating for their AD 

using various approaches. The test samples considered as consensus 

outliers with different AD approaches hint the possible similarities in 

the underlying AD algorithms as well as higher chances of rendering 

those test samples being unreliably predicted. Finally, the impact on 

model’s statistics was evaluated after excluding the test samples that 

were rendered outside the model’s AD using all the listed approaches. 

 

 

5.1  An overview of the case studies 

The earlier chapters discussed several classical approaches from the existing 

literature towards defining the AD of QSAR models. Moreover, two new AD 

approaches were also introduced and illustrated using simulated datasets. In 

this section, several QSAR models from the existing literature will be used 

as case studies to evaluate their AD implementing different classical and 

novel approaches discussed earlier. All these models will be introduced 

based on the five OECD principles for model validation. This will help to 

better understand the validity of these models. Later, the results derived 

implementing all the earlier discussed AD approaches on these models will 

be provided. An overview of all the test samples excluded from the model’s 
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AD with different approaches will be provided including their names, CAS 

numbers and their error in prediction will be provided. 

Most of the case studies discussed in this chapter are of regulatory relevance. 

CAESAR Bioconcentration factor models [36-38] and QSAR models for 

ready biodegradability of chemicals [39], for instance were clearly developed 

to contribute to the REACH implementation. The other two QSAR models to 

predict soil adsorption coefficient [40-41] and the OH tropospheric 

degradation of volatile organic compounds [42] were retrieved from the Joint 

Research Centre (JRC) QSAR Model Reporting Format (QMRF) repository 

[43]. 

5.2  Assessing reliability in derived results 

For all the regression models considered, before the AD evaluation was 

performed, an overview of the model’s statistics (retaining the test set in its 

entirety) was provided using the following key parameters: 

a) Determination coefficient R
2 
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b) Root-Mean-Square Error RMSE 
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c) Predictive squared correlation coefficient Q
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d) Root-Mean-Square Error in Prediction RMSEP 

2

1

ˆ( )
TSn

j j

j

TS

y y

RMSEP
n

=

−

=

∑
 (5.4) 

where, i
y  is the measured response value for the i-th training sample and

 i
ŷ  

its predicted value; j
y  is the measured response value for the j-th test sample 

and
 j

ŷ  its predicted value; nTR and nTS represent the total number of training 

and test samples, respectively, and TR
y  is the mean response of the training 

set.  

Later, when different AD approaches were implemented on these models, in 

order to reflect upon the model’s predictive ability, following key parameters 

were evaluated:  

a) Number of test samples excluded from the model’s AD. 

b) Q
2
 calculated from the test samples retained within the AD             

c) List of all the test samples (their sample IDs) considered outside the AD. 

Additionally, for the novel kNN based AD approach discussed in Chapter 3: 

a) For each j-th test sample, its absolute standardized error calculated as: 

ˆ
j j

j

Y

y y
SE

s

−
=                                            (5.5) 

where, j
y is the measured value for the j-th test sample and

 j
ŷ  its predicted 

value; sY the standard error of estimate derived from the training set. 

b) The information about how many times the threshold criterion (Equation 

3.5) is satisfied by each test sample, that is, how many training neighbours 

(i.e. Kj) are located at a distance less than or equal to their threshold values, 

from a given test sample.  

In theory, a test sample satisfying the threshold criterion several times (i.e. 

having high Kj)  is expected to be predicted with higher accuracy. This can 
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be desired since less distant training neighbours indicate a higher structural 

similarity of the test sample. On the contrary, a test sample satisfying the 

threshold criterion for no training neighbours (Kj = 0) indicates that there 

wasn’t any training sample similar enough to reliably predict that test 

sample. Kj (number of training neighbours) vs. absolute standardised error 

plot for all the test samples derived was derived. 

For all the classification models on ready biodegradability of chemicals, 

following key parameters were evaluated to determine their predictive ability 

[38]: 

a) Specificity (Sp) 

                          
TN

Sp =
TN + FP                  (5.6) 

where, TN (True Negatives) is the number of not ready biodegradable 

samples that were classified as not ready biodegradable. FP (False Positives) 

is the number of not ready biodegradable samples wrongly classified as 

ready biodegradable. 

b) Sensitivity (Sn) 

                          
TP

Sn =
TP + FN                   (5.7) 

where, TP (True Positives) is the number of ready biodegradable samples 

correctly predicted as ready biodegradable. FN (False Negatives) is the 

number of ready biodegradable samples wrongly predicted as not ready 

biodegradable. 

c) Error Rate is calculated as the complement of the average of specificity 

and sensitivity.  

It should be remembered that all the AD approaches discussed in this thesis 

define a model’s AD in its descriptor space. However, an attempt has been 

made in this chapter to better understand if the observations made evaluating 

for a model’s AD in its descriptors space can be well reflected on its 

response domain. To achieve this, test samples excluded from the model’s 
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AD were evaluated for their corresponding error in prediction (absolute 

difference in their experimental and predicted response values). It could be 

interesting to see if the test samples rendered as unreliable in the model’s 

descriptor space are also associated with higher prediction error or not. In 

theory, this is a reasonable assumption since structurally similar chemicals 

can be associated with similar descriptor values which collectively are able 

to capture the increasing or decreasing trend of the modelled endpoint. Thus, 

if a query/test chemical is excluded from the model’s descriptor space, it 

cannot be predicted reliably either. However, in practice, exceptions may 

arise due to several reasons for instance, defects in experimental 

techniques/experimental variability or even over-fitted models. 

 

5.3 CAESAR Bioconcentration factor models  

5.3.1  Model description 

OECD principle 1: A defined endpoint 

CAESAR hybrid model provides prediction for Bioconcentration factor 

(BCF) in fish. Experimental data on BCF was obtained for two fish species, 

Cyprinus Carpio and salmonids using the OECD 305 protocol. 

From regulatory point of view, BCF is of very high significance for REACH 

implementation. The BCF value for a given chemical can decide if it can be 

identified as bioaccumulative (if BCF>2000 or logBCF>3.3) or very 

bioaccumulative (if BCF>5000 or logBCF>3.7). 

All the experimental BCF values used for developing this model were 

converted to their log units [38]. 

OECD principle 2: An unambiguous algorithm 

CAESAR BCF model is a hybrid model derived combining the outputs from 

two different models (model A and model B). The training set of both these 

models consists of 378 samples, while the validation was carried out using a 

test set with 95 samples. 

Both these models are Radial Basis Function Neural Network (RBFNN) 

[46], however, the earlier used an heuristic approach while the latter 
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implemented Genetic Algorithm for descriptor selection. Table 5.1 reports 

the descriptors associated with model A and B, respectively. AD evaluation 

will be carried out for both these models [36-38].  

 

Table 5.1   List of descriptors used to develop CAESAR BCF models 

Descriptor Description Models 

MlogP Moriguchi octanol-water partition coefficient Models A and B 

Cl-089 Cl attached to C1(sp2) Model A 

GATS5V 
Geary autocrrelatin – lag 5/weighed by atomic  

van der Waals volumes 

Model A 

X0Solv Solvation connectivity index Model B 

SsCl Sum of all (–Cl) E-State values in molecule Model B 

AEige 
Absolute eigenvalue sum from electronegativity 

 weighted distance matrix 

Model A 

BEHp2 
Highest eigenvalue n. 2 of Burden matrix / weighed by atomic 

polarizabilities. 

Models A and B 

MATS5V 
Moan autocorrelation – lag 5/weighed by atomic van der Waals 

volumes 

Model B 

OECD principle 3: A defined domain of applicability 

The CAESAR model allows a user to understand its defined domain of 

applicability in the following three ways: 

a) By evaluating the ranges of descriptor values: If a given test sample has 

any of its descriptor values outside the defined ranges, the user will be 

provided with an alert.  

b) Identifying chemical fragments not included within the training space: If a 

test sample contains a chemical fragment that is not included within the 

chemical diversity of the training set, an error message will be generated.  

c) Identifying the most similar training samples: For each test sample, six 

most similar training samples are shown. This allows a better understanding 

of the structural similarity between the predicted sample and the training 

space. This can also provide a good basis to interpret the reliability in 

prediction derived for the test samples [36-38]. 

OECD principle 4: Appropriate measures of goodness-of-fit, robustness and 

predictivity 
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Table 5.2 provides with the default statistical parameters for model A and B, 

retaining all the test samples within the model’s AD.  

 

Table 5.2  Model statistics for the CAESAR BCF models. 

Model               Training set             Test set 

R2           RMSE  Q2 RMSEP (d) 

1) Model A 0.804 0.591 0.797 0.600 

2) Model B 0.810 0.581 0.774 0.634 

OECD principle 5: A mechanistic interpretation, if possible 

The authors provided the following a posteriori interpretation towards the 

model descriptors in the QSAR Model Reporting Format (QMRF) of this 

model: The model is significantly relying on the MlogP descriptor. This 

descriptor seems to work quite well with chemicals containing C, N and O 

atoms, while it may not be very accurate for samples containing other atoms 

like Cl and P [38].  

 

5.3.2  AD evaluation for CAESAR BCF model A 

Table 5.3 provides with an overview of the results derived implementing 

various classical and novel AD approaches. Implementing PCA Bounding 

Box rendered two test samples outside the AD providing the most noticeably 

positive impact on the resulting Q
2
. These samples were retained within the 

AD with classical Bounding Box. Excluding 29 samples outside the model’s 

AD, Optimized Gaussian kernel approach was associated with the most 

restricted AD and the highest recorded Q
2
 of 0.830 but obviously due to 

several test samples being outside the AD. The Q
2
 slightly improved with the 

novel kNN-based AD approach, while no positive impact was observed with 

the LCMD based method with 8.4 % of the test samples discarded from the 

model’s AD. 
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Table 5.3  An overview of the results for AD evaluation on CAESAR BCF model A (Test set:95 

samples) 

AD method Samples 

outside 

AD (%) 

Q
2
 List of samples outside AD 

Bounding Box 0 0.797 None 

PCA Bounding Box (Using first 2 PCs) 2.1 0.804 33 40 

Convex Hull 0 0.797 None 

Leverage approach 4.2 0.803 18 33 43 61 

Centroid dist. (Euclidean, 95 percentile) 4.2 0.804 33 43 61 91 

Centroid dist.  (Manhattan,  95 percentile) 4.2 0.804 33 43 61 91 

Centroid dist.  (Mahalanobis,  95 percentile) 4,2 0.803 18 33 43 61 

kNN general thr (Euclidean, k=5) 8.4 0.797 3 33 34 40 61 82 83 94 

kNN general thr. (Manhattan, k=5) 7.4 0.799 3 33 34 61 82 83 94 

kNN general thr. (Mahalanobis, k=5) 10.5 0.794 3 33 34 40 61 80 82 83 91 94 

Gaussian kernel: fixed 10.5 0.794 3 24 33 34 40 61 82 83 91 94 

Gaussian kernel: optimized 30.5 0.830 3 9 12 22 24 33 34 38 40 45 47 51 53 

54 56 61 68 69 75 76 80 82 83 87 89 

91 93 94 95 
 

Gaussian kernel: variable 15.8 0.787 3 9 24 33 34 40 43 61 80 82 83 89 91 

94 95 
 

Adaptive kernel 7.4 0.800 3 33 43 61 82 83 91 

Epanechnikov kernel 8.4 0.800 3 33 40 43 61 83 91 94 

kNN kernel (k=8) 9.5 0.797 3 33 34 40 43 61 83 91 94 

Triangular kernel 11.6 0.792 3 24 33 34 40 61 80 82 83 91 94 

Novel kNN approach (Euclidean, k=8) 6.3 0.801 3 33 40 61 82 83 

Novel kNN approach (Manhattan, k=8) 8.4 0.797 3 33 34 61 80 82 83 94 

Novel kNN approach (Mahalanobis, k=8) 8.4 0.797 3 33 34 40 61 82 83 94 

Novel LCMD approach 8.4 0.786 3 34 43 61 80 82 83 94 
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Figure 5.1  Consensus test samples excluded from the AD of CAESAR BCF model A 

 

Figure 5.1 provides with the consensus test samples excluded from the 

model’s AD implementing various classical and novel proposed AD 

approaches. Test samples 33 and 61 were identified as unreliable predictions 

implementing most of the AD approaches. Such resemblance in the final 

output from different approaches strengthens the decision to exclude 

unreliable test samples. 

Table 5.4 provides with some useful information about the test samples 

considered outside the model’s AD with different classical and novel 

approaches. Apart from several unreliably predicted samples, the list in this 

table also specifies some cases where the prediction error was quite 

negligible.  For instance, sample 34 (tetrabromo-2-chlorotoluene) that was 

excluded from the model’s AD with several approaches but was associated 

with a prediction error of log 0.01 units. 
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Table 5.4   An overview of all the test samples excluded from the AD of CAESAR model A with 

different approaches 

Sample 

ID 
Name CAS 

Exp. 

logBCF 

Pred. 

logBCF 

Abs. 

pred.error 

3 Pentachlorophenol 87-86-5 2.50 1.84 0.66 

9 3,6-Dichlorodibenzofuran 74918-40-4 3.01 3.13 0.12 

12 2,2,4-Trimethyl-1,3-

pentanediol 

144-19-4 -1.00 0.64 1.64 

18 3,4-Dichlorophenol 95-77-2 1.69 1.33 0.36 

22 2,6-Dicyclohexylphenol 4821-19-6 2.89 2.10 0.79 

24 2-Hydroxy-4-n-

octoxybenzophenone 

1843-05-6 1.90 1.94 0.04 

33 Hexachlorobenzene 118-74-1 4.23 2.90 1.33 

34 Tetrabromo-2-chlorotoluene 39569-21-6 3.98 3.97 0.01 

38 Monochlorobenzene 108-90-7 1.13 1.61 0.48 

40 Pentachlorobenzene 608-93-5 3.49 3.22 0.27 

43 Trichlorometane 67-66-3 0.93 0.54 0.39 

45 1,10-Dibromodecane 4101-68-2 1.78 2.68 0.90 

47 Tetrachloroethylene 127-18-4 1.72 1.13 0.59 

51 n-Pentadecane 629-62-9 1.22 2.68 1.46 

53 2,2''-Methylenebis(6-t-buthyl-

4-methylphenol) 

119-47-1 1.97 2.33 0.36 

54 Benzene-1,2-dicarboxylic acid 

bis (2-ethylhexyl) ester 

117-81-7 1.19 1.47 0.28 

56 Triethanolamine 102-71-6 0.59 1.01 0.42 

61 2,4,6-Trichloroaniline 634-93-5 2.00 1.41 0.59 

68 2,2''-Dichlorohydrazobenzene 782-74-1 3.65 3.19 0.46 

69 1-(N-

Phenylamino)naphthalene 

90-30-2 3.23 2.74 0.49 

75 Tris(1,3-dichloro-2-

propyl)phosphate 

13674-87-8 0.13 1.75 1.62 

76 p-Phenylphenol 92-69-3 1.59 1.96 0.37 

80 4-Chloro-1-nitro-

2(trifluoromethyl) benzene 

118-83-2 1.87 2.03 0.16 

 

82 N-Hexamethylolmelamine 

hexamethylether 

3089-11-0 0.28 0.06 0.22 

83 Disperse Yellow 163 71767-67-4 1.56 1.16 0.40 

87 O,O-Dimethyl-S-(N-

methylcarbamoylmethyl) 

phosphorodithioate 

60-51-5 -0.26 0.12 0.38 

89 m-nitrobenzene sulfonic acid 98-47-5 0.70 0.33 0.37 

91 Tris(p-

isopropylphenyl)phosphate 

26967-76-0 1.50 2.02 0.52 

93 1-Amino-8-naphthol-3,6-

disulfonic acid 

90-20-0 0.46 0.45 0.01 

94 3,3''-Dichloro-5,5''-benzidine 

disulfonic acid 

123251-96-7 0.20 0.04 0.16 

95 Disperse Yellow 64 10319-14-9 1.08 1.80 0.72 
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Figure 5.2   Kj vs. Absolute standardized error plot for the test samples of CAESAR BCF 

model A 

 

Figure 5.2 provides with a plot from the novel kNN based AD approach that 

tries to compare the observations made in the model’s descriptor space and 

the response domain. The test samples are clearly showing a decreasing 

pattern from left towards right indicating a lowering prediction error with a 

corresponding increase in the number of training thresholds satisfied by the 

test samples. This plot also tries to graphically reflect upon the observations 

made from the previous table and plot for this model. Samples 33 and 61 for 

instance, are associated with reasonably higher prediction error and were 

able to satisfy none of the training thresholds indicating them being 

unreliably predicted. On the other hand, test sample 14 and 28 were 

associated with very low prediction error and satisfied maximum training 

thresholds. Thus, higher structural similarity resulted in better predictions as 

evident from this plot.  

 

5.3.3 AD evaluation for CAESAR BCF model B 

Table 5.5 provides with an overview of the results derived implementing various 

classical and novel AD approaches on CAESAR BCF model B.  
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Table 5.5  An overview of the results for AD evaluation on CAESAR BCF model B (Test set: 

95 samples) 

AD method Samples 

outside 

AD (%) 

Q
2
 List of samples outside AD 

Bounding Box 0 0.774 None 

PCA Bounding Box (First 2 PCs) 0 0.774 None 

Convex Hull 0 0.774 None 

Leverage approach 3.2 0.767 43 50 91 

Centroid dist. (Euclidean, 95 percentile) 3.2 0.767 43 50 91 

Centroid dist.  (Manhattan,  95 percentile) 5.3 0.764 36 37 43 50 91 

Centroid dist.  (Mahalanobis,  95 

percentile) 

3.2 0.767 43 50 91 

kNN general thr. (Euclidean, k=5) 1.1 0.772 82 

kNN general thr. (Manhattan, k=5) 1.1 0.772 82 

kNN general thr. (Mahalanobis, k=5) 4.2 0.783 75 82 87 94 

Gaussian kernel: fixed 13.7 0.778 3 33 34 40 43 50 74 75 82 83 87 91 

94 

Gaussian kernel: optimized 29.5 0.787 3 21 33 34 40 43 44 46 47 48 50 52 

54 56 61 73 74 75 80 81 82 83 87 88 

91 93 94 95 

Gaussian kernel: variable 22.1 0.777 3 33 34 40 43 44 47 48 50 73 74 75 

80 81 82 83 87 88 91 93 94 

Adaptive kernel 2.1 0.769 43 82 

Epanechnikov kernel 3.2 0.769 33 43 82 

kNN kernel (k=8) 4.2 0.767 33 40 43 82 

Triangular kernel 10.5 0.786 3 33 34 50 74 75 82 83 87 94 

Novel kNN approach (Euclidean, k=8) 3.2 0.785 33 75 82 

Novel kNN approach (Manhattan, k=8) 7.4 0.779 33 40 74 75 82 83 87 

Novel kNN approach (Mahalanobis, k=8) 6.3 0.782 33 74 75 82 83 87 

Novel LCMD approach 5.3 0.764 43 50 82 83 91 

 

The range and geometric-based approaches retained all the test samples 

inside the model’s AD. All other set of approaches associated some test 

samples being unreliably predicted, however, no major impacts were 

observed on the resulting Q
2
. This includes both the novel proposed AD 

approaches. This parameter varied slightly even after excluding several other 

test samples as obvious in the case of Gaussian kernel based approaches. 
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Figure 5.3   Consensus test samples excluded from the AD of CAESAR BCF model B 

 

 

Figure 5.3 provides with an overview of the consensus test samples being 

excluded from the model’s AD implementing different approaches. Samples 

43 and 82 (Trichlorometane and N-hexamethylolmelamine hexamethylether) 

were associated with the maximum frequency, thus indicating them being 

excluded from the AD using several different algorithms independent of each 

other. Several other test samples that were excluded by only one AD 

approach were not highlighted in the figure, however, Table 5.6 provides 

with some useful information about all the test samples excluded by different 

AD approaches.  
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Table 5.6  An overview of all  test samples excluded from the AD of CAESAR model B with 

different approaches 

Sample 

ID 
Name CAS 

Exp. 

logBCF 

Pred. 

logBCF 

Abs 

.pred.error 

3 Pentachlorophenol 87-86-5 2.50 1.75 0.75 

21 Cyclohexane 110-82-7 1.92 1.98 0.06 

33 Hexachlorobenzene 118-74-1 4.23 3.57 0.66 

34 Tetrabromo-2-chlorotoluene 39569-21-6 3.98 2.77 1.21 

36 2,3,4,2'',5''-Pentachlorobiphenyl 38380-02-8 4.02 4.53 0.51 

37 2,3'',4,4'',6-Pentachlorobiphenyl 56558-17-9 4.81 4.52 0.29 

40 Pentachlorobenzene 608-93-5 3.49 3.48 0.01 

43 Trichlorometane 67-66-3 0.93 1.03 0.10 

44 1,1,2,2-Tetrachloroethane 79-34-5 0.93 0.91 0.02 

46 

1,1,2,2-Tetrachloro-1,2-

difluoroethane 76-12-0 1.78 1.25 
0.53 

47 Tetrachloroethylene 127-18-4 1.72 0.66 1.06 

48 Dibromoneopentylglycol 3296-90-0 -0.04 0.22 0.26 

50 Heptachlor 76-44-8 3.95 4.17 0.22 

52 1,3,5-Tri-tert-butylbenzene 1460-02-2 4.37 2.65 1.72 

54 

Benzene-1,2-dicarboxylic acid bis 

(2-ethylhexyl) ester 117-81-7 1.19 1.49 
0.30 

56 Triethanolamine 102-71-6 0.59 0.28 0.31 

61 2,4,6-Trichloroaniline 634-93-5 2.00 1.45 0.55 

73 2,2''-Dichlorodiethyl ether 111-44-4 -0.08 0.77 0.85 

74 Trichloroacetic acid 76-03-9 -0.15 -0.22 0.07 

75 

Tris(1,3-dichloro-2-

propyl)phosphate 13674-87-8 0.13 1.74 
1.61 

80 

4-Chloro-1-nitro-2(trifluoromethyl) 

benzene 118-83-2 1.87 2.28 
0.41 

81 3-Nitrophthalic acid 603-11-2 0.72 0.26 0.46 

82 

N-Hexamethylolmelamine 

hexamethylether 3089-11-0 0.28 0.46 
0.18 

83 Disperse Yellow 163 71767-67-4 1.56 1.07 0.49 

87 

O,O-Dimethyl-S-(N-

methylcarbamoylmethyl) 

phosphorodithioate 60-51-5 -0.26 0.34 

0.60 

88 2,2-Dichloropropionic acid N/A 0.85 -0.01 0.86 

91 Tris(p-isopropylphenyl)phosphate 26967-76-0 1.50 1.25 0.25 

93 

1-Amino-8-naphthol-3,6-disulfonic 

acid 90-20-0 0.46 0.65 
0.19 

94 

3,3''-Dichloro-5,5''-benzidine 

disulfonic acid 123251-96-7 0.20 0.42 
0.22 

95 Disperse Yellow 64 10319-14-9 1.08 1.44 0.36 
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Figure 5.4 :  Kj vs. Absolute standardized error plot for the test samples of CAESAR BCF 

model B 

 

Figure 5.4 provides with the Kj vs. absolute standardized error plot derived 

from the novel kNN based AD approach. Several test samples like 30, 32, 57 

and 84 were hindering the expected lowering pattern in prediction error with 

increase Kj values. Such samples indicate being associated with high 

predictor error despite of their higher Kj values which in theory shouldn’t be 

the case. However, this plot tries to reflect the outcome of AD evaluation in 

the model’s descriptor space taking into account the model’s response 

domain and the observations in these two different spaces may not converge 

necessarily.  

 

5.4 QSAR model for soil adsorption coefficient Koc 

This model had been retrieved from the Joint Research Centre (JRC) QSAR 

Model Reporting Format (QMRF) repository. Its QMRF ID in the repository 

is Q2-10-26-179 [40-41]. 
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5.4.1  Model description   

OECD principle 1: A defined endpoint 

The adsorption coefficient serves as a useful indicator for the binding 

capacity of a given chemical substance to the organic matter of the 

soil/sludge.  

This QSAR model was developed using the adsorption coefficient on soil 

determined based on the OECD test guideline TG121. The adsorption 

coefficient (Koc) corresponds to the ratio between the concentration of the 

substance in the soil or sludge to that in the aqueous phase, when the 

adsorption equilibrium has been achieved. This endpoint is unitless and for 

the modelling purpose, all the values were converted to their log unit 

(logKoc). 

OECD principle 2: An unambiguous algorithm 

The model was trained using 108 samples and it was validated on a test set 

with 54 samples. This QSAR model was developed using Multiple Linear 

Regression with the set of descriptors given in Table 5.7. 

Table 5.7  List of descriptors used to develop the logKoc model. 

Descriptor Description 

Desc1 Polarity parameter (AM1)/distance is the difference of maximum 

positive and negative partial charges (from AM1 calculations). 
 

Desc2 ALFA polarizability (DIP) (AM1) is the quatum chemically (AM1 

method) obtained dipole based polarizability of molecule. 
 

Desc3 Max net atomic charge (AM1) for C atoms is the maximum partial 

charge on any carbon atom (from AM1 calculation). 
 

Desc4 WNSA 1 Weighted PNSA (PNSA1*TMSA/1000) (Zefirov) is the 

partially charge weighted partial negiatively charged surface aread of 

molecule. 

 

The resulting MLR equation is as follows: 

logKoc =0.96 – 0.26*Desc1 + 1.07E- 002*Desc2 – 1.99*Desc3 + 1.30E-002*Desc4 
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OECD principle 3: A defined domain of applicability 

 

The authors used a range based AD approach considering the range of each 

descriptor values used for model development. This approach has been 

already discussed in this thesis as one of the classical AD methodologies. 

The results for implementing this approach will be provided later in this 

section where the AD for this model will be evaluated using different 

approaches. 

OECD principle 4: Appropriate measures of goodness-of-fit, robustness and 

predictivity 

Table 5.8 provides with the default model statistical parameters, retaining all 

the test samples within the model’s AD.  

Table 5.8  Model statistics for the logKoc model. 

            Training set               Test set 

R2     RMSE  Q2  RMSEP 

0.756    0.434 0.737 0.451 

OECD principle 5: A mechanistic interpretation, if possible 

The authors provided the following a posteriori mechanistic interpretation to 

relate the chosen set of descriptors to the modelled endpoint:  

They explained that there exists a close relation between the soil sorption and 

water solubility as well as hydrophobicity. This indicates that the features 

useful in determining the latter two properties can be also significant in 

determining the modelled endpoint for this model. Descriptors Desc2 and 

Desc4 are sized based descriptors and usually the large chemicals are 

expected to have higher soil sorption since they are also associated with poor 

water solubility. On the other hand, descriptors Desc1 and Desc3 are charge 

based descriptors. The presence of an active functional group next to carbon 

is indicated by a high charge around it, which in turns indicates higher water 

solubility. Moreover, higher polarity is also a useful indicator of better 
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solubility. As a result, the regression coefficients for these descriptors are 

negative, indicating that their higher values can decrease the soil sorption. 

5.4.2   AD Evaluation for the logKoc model 

Table 5.9 provides with an overview of the results derived implementing 

various classical and novel AD approaches on this model. 

Test samples 20 and 21 where associated with the highest frequency and 

were rendered as unreliable prediction by all the approaches except for those 

cases where all the test samples were retained inside the model’s AD, 

including both the novel AD approaches. Most of the Gaussian potential 

function based approaches excluded several other test samples from the 

model’s AD. One of the major reasons for this could be their lower threshold 

values restricting the defined interpolation space. However, excluding 

several test samples to such extend didn’t had any noticeable positive impact 

on the model statistics. For instance, Gaussian optimized kernel excluded 

33.3% of the  test samples; however, the associated Q
2
 remained almost the 

same as for approaches that retained all the test samples within the model’s 

AD. 

 

Figure 5.5  Consensus test samples excluded from the AD of logKoc model 

Figure 5.5 provides with a list of consensus test samples considered outside 

the AD with different approaches.  

20 21 22 53 28 44 45 51 5 19 23 25 17 18 46 26 31 39 49
0

2

4

6

8

10

12

14

Test samples

N
u
m

b
e
r 

o
f 

ti
m

e
s
 c

o
n
s
id

e
re

d
 o

u
ts

id
e
 A

D



5. Case studies 

 

 

77 

 

Table 5.9   An overview of the results for AD evaluation on logKoc model (Test set:54 samples) 

AD method 

Samples 

outside 

AD (%) 

Q2 List of samples outside AD 

Bounding Box 3.7 0.731 20 21 

PCA Bounding Box (First 2 PCs) 0 0.737 None 

Convex Hull 0 0.737 None 

Leverage approach 3.7 0.731 20 21 

Centroid dist. (Euclidean, 95 percentile) 3.7 0.731 20 21 

Centroid dist.  (Manhattan,  95 

percentile) 
3.7 0.731 20 21 

Centroid dist.  (Mahalanobis,  95 

percentile) 
5.6 0.726 18 20 21 

kNN general thr. (Euclidean, k=5) 1.9 0.736 20 

kNN general thr. (Manhattan, k=5) 0 0.737 None 

kNN general thr. (Mahalanobis, k=5) 5.6 0.744 20 21 53 

Gaussian kernel: fixed 22.2 0.750 5 19 20 21 22 23 25 28 44 45 51 53 

Gaussian kernel: optimized 33.3 0.738 
5 17 19 20 21 22 23 25 26 28 31 39 

44 45 46 49 51 53 

Gaussian kernel: variable 14.8 0.736 20 21 22 28 44 45 51 53 

Adaptive kernel 3.7 0.731 20 21 

Epanechnikov kernel 5.6 0.731 20 21 22 

kNN kernel (k=5) 5.6 0.726 18 20 21 

Triangular kernel 25.9 0.740 
5 17 19 20 21 22 23 25 28 44 45 46 

51 53 

Novel kNN approach (Euclidean, k=5) 0 0.737 None 

Novel kNN approach (Manhattan, k=5) 0 0.737 None 

Novel kNN approach (Mahalanobis, 

k=5) 
0 0.737 None 

Novel LCMD approach  0 0.737 None 

 

Table 5.10 provides with an overview of all the test samples excluded from 

the model’s AD with different approaches. Sample 21 (p,p-DDE) is an 

interesting case since it was associated with a very high frequency of being 

excluded from the model’s AD, however, was very well predicted (with 

absolute prediction error of 0.01). This indicates that the sample may not be 

an outlier in the model’s response domain despite of it being an extrapolation 

in the model’s descriptor space. Majority of the test samples listed in Table 

5.11 were associated with an absolute prediction error lower than 0.5 log 

units. 
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Figure 5.6 : Kj vs. Absolute standardized error plot for test samples of logKoc model 

 

 

Figure 5.6 provides with the plot derived from the novel kNN based AD 

approach.  As the novel approach didn’t exclude any test samples from the 

model’s AD, all the test samples satisfied at least one training threshold. 

Unlike several other AD approaches, this method did not consider test 

sample 21 as outside the AD, however, this sample satisfied very few 

training thresholds which somehow further highlights the fact that it may not 

be very structurally similar to the training space. On the other hand, test 

samples 2 and 9 which were not excluded from the model’s AD by any of 

the implemented approaches satisfied a large number of training thresholds 

but were associated with highest absolute standardized errors. 
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Table 5.10  An overview of all the test samples excluded from the AD of logKoc model  with 

different approaches 

Sample ID Name CAS 
Exp. 

logKoc 

Pred. 

logKoc 

Abs. 

pred.error 

5 Benomyl 17804-35-2 2.71 2.99 0.28 

17 Triallate 2303-17-5 3.35 3.43 0.08 

18 Benfluralin 1861-40-1 3.99 3.85 0.14 

19 Nitralin 4726-14-1 2.92 3.60 0.68 

20 p,p-DDT 50-29-3 5.31 4.89 0.42 

21 p,p-DDE 72-55-9 4.82 4.83 0.01 

22 Dieldrin 60-57-1 4.55 4.11 0.44 

23 Azinphos methyl 86-50-0 2.28 2.81 0.53 

25 Diazinon 333-41-5 2.75 2.08 0.67 

26 Ethoprophos 13194-48-4 1.80 2.40 0.60 

28 Malathion 121-75-5 3.07 2.45 0.62 

31 4-Phenoxyphenylurea 78508-44-8 2.56 2.75 0.19 

39 Chloroxuron 1982-47-4 3.55 3.22 0.33 

44 Imazalil 35554-44-0 3.73 3.71 0.02 

45 Oxadiazon 19666-30-9 3.51 3.62 0.11 

46 Thiabendazole 148-79-8 3.24 2.99 0.25 

49 EPN 2104-64-5 3.12 3.62 0.50 

51 Sulprofos 35400-43-2 4.08 3.74 0.34 

53 Anilazine 101-05-3 3.00 3.86 0.86 

 

5.5 OH tropospheric degradation model 

5.5.1  Model description 

This model had been retrieved from the JRC’s QMRF repository (QMRF ID : Q8-

10-30-221) [42].  

OECD principle 1: A defined endpoint 

This QSAR model predicts the OH tropospheric degradation of volatile 

organic compounds. Reaction of chemicals with OH radicals highlights a 

very significant chemical process in the gasphase. Rate constants for OH 

radical degradation (logK(OH)) were directly measured, converted to their 

log units and multiplied by -1 in order to obtain positive values [42].  

OECD principle 2: An unambiguous algorithm 

The original dataset of 423 samples was split into training and test set. The 

model was trained using 212 training molecules and it was validated on a test 
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set with 211 molecules. This QSAR model was developed using Multiple 

Linear Regression with the set of molecular descriptors shown in Table 5.11. 

Table 5.11  List of descriptors used to develop the logK(OH) model. 

 

  

 

 

 

The resulting MLR equation is as follows: 

logK(OH) =3.61+ 2.15*Desc1 - 0.698*Desc2 + 1.67*Desc3 – 12.7*Desc4 

 

OECD principle 3: A defined domain of applicability 

 

The authors used following two ways to address the applicability domain of 

the model:  

Chemical identity basis: Different group of chemicals used for training the 

model including aliphatic and aromatic hydrocarbons, alcohols, amines and 

halogenated compounds. The test samples are required to be structurally 

similar to the training samples. 

Descriptor ranges: The minimum and maximum values for each descriptor 

were considered. This is a range based AD approach [42]. 

OECD principle 4: Appropriate measures of goodness-of-fit, robustness and 

predictivity 

Table 5.12 provides with the default model statistical parameters, retaining 

all the test samples within the model’s AD.  

 

Descriptor Description 

Desc1 
HASA-1/TMSA (AM1) is the relative solvent-accessible surface 

area of Hbonding acceptor atoms (from AM1 calculation)  

Desc2 
HOMO energy (AM1) is the energy of highest occupied molecular 

orbital energy. 

Desc3 Relative number of aromatic bonds 

Desc4 
HACA-2/TMSA (Zefirov) is the sum of solevent-accessible surface 

area of H-bonding acceptor atoms, selected by threshold charge. 
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Table 5.12  Model statistics for the logK(OH) model. 

           Training set              Test set 

R2  RMSE  Q2  RMSEP 

0.832 0.422 0.784 0.479 

 

OECD principle 5: A mechanistic interpretation, if possible 

The authors provided the following a posteriori mechanistic interpretation to 

relate the chosen set of descriptors to the modelled endpoint. All the four 

descriptors used for model development were relevant to the H-abstraction. 

Descriptors Desc1 and Desc4 indicate the H-acceptor bonding as well as the 

size of the compounds. In theory they provide with different information. 

Desc1 counts the solvent accessible surface area for all the H acceptor atoms 

while Desc4 accounts for only the charged areas. The nucleophilicity of a 

molecule is indicated by the descriptor Desc2 and finally, the aromatic 

compounds are differentiated from aliphatics by the descriptor Desc3 [42]. 

5.5.1 AD evaluation for logK(OH) model 

Table 5.13 provides with an overview of the results derived implementing various 

classical and novel AD approaches. 

This case study had been quite interesting with respect to the differences 

visible in the algorithms followed by different AD approaches. For instance, 

PCA bounding box and Convex hull approaches were the only approaches 

retaining all the 211 test samples within the model’s AD. On the other hand, 

Gaussian kernels excluded up to one-fourth of the test samples outside the 

model’s AD. No major improvements were observed in terms of Q
2
 with 

most of the approaches, where a reasonable number of test samples were 

excluded from the model’s AD. Highest Q
2
 was recorded for Gaussian kernel 

(optimized) that excluded 28% of the test samples outside the model’s AD 

taking six nearest neighbours into account. With both the novel AD 

approaches, the Q
2
 slightly improved from its default value. 
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Table 5.13  An overview of the results for AD evaluation on logK(OH) model (Test set: 211 

samples) 

AD method Samples 

outside 

AD (%) 

Q2 List of samples outside AD 

Bounding Box 0.9 0.783 26 35 

PCA Bounding Box (First 2 PCs) 0 0.784 None 

Convex Hull 0 0.784 None 

Leverage approach 4.3 0.784 26 35 42 50 58 128 138 140 182 

Centroid dist. (Euclidean, 95 percentile) 3.8 0.782 26 35 42 101 128 138 140 162 

Centroid dist.  (Manhattan,  95 

percentile) 
4.7 0.782 26 42 57 101 114 128 138 140 162 

185 
Centroid dist.  (Mahalanobis,  95 

percentile) 
4.7 0.783 26 35 42 50 58 128 138 140 162 182 

kNN general thr. (Euclidean, k=5) 3.8 0.786 35 42 50 57 83 141 182 185 

kNN general thr. (Manhattan, k=5) 4.7 0.788 35 42 50 57 83 130 141 182 185 203 

kNN general thr. (Mahalanobis, k=5) 6.2 0.788 2 35 42 50 57 58 83 130 141 157 182 

185 203 

Gaussian kernel: fixed 9.5 0.785 2 35 42 50 57 78 83 84 100 116 121 

122 130 140 141 157 182 185 200 203 
 

Gaussian kernel: optimized 28.0 0.826 2 9 16 26 29 35 40 42 44 47 50 51 57 

58 62 63 65 78 81 83 84 85 86 87 88 

91 100 101 102 114 116 118 119 121 

122 126 128 129 130 133 139 140 141 

142 144 146 157 173 174 178 182 184 

185 193 199 200 202 203 204 
 

Gaussian kernel: variable 23.2 0.795 2 9 35 38 39 40 42 44 50 51 57 58 62 

63 65 78 83 84 85 88 90 91 100 101 

102 116 119 121 122 126 130 133 139 

140 141 142 146 157 169 174 178 182 

184 185 193 197 200 202 203 
 

Gaussian kernel: adaptive 6.6 0.784 26 35 42 50 57 83 101 128 138 140 

141 162 182 185 
 

Epanechnikov kernel 4.3 0.785 35 42 50 57 83 140 141 182 185 

kNN kernel (k=5) 5.2 0.784 35 42 50 57 83 116 140 141 157 182 

185 

Triangular kernel 7.1 0.787 2 35 42 50 57 83 100 121 122 130 141 

157 182 185 203 

Novel kNN approach (Euclidean, k=6) 4.3 0.787 35 42 50 57 83 84 126 141 182 

Novel kNN approach (Manhattan, 

k=6) 

4.3 0.787 35 42 83 126 182 203 126 141 182 

Novel kNN approach (Mahalanobis, 

k=6) 

5.2 0.786 2 35 40 42 50 57 83 101 141 157 182 

Novel LCMD approach 9.5 

 

0.782 2 26 35 42 50 63 83 88 100 101 121 

122 126 130 140 141 157 182 200 203 
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Figure 5.7  Consensus test samples excluded from the AD of logK(OH) model 

Figure 5.7 provides with an overview of the test samples frequently excluded 

from the model’s AD. Since the entire list including the test samples 

excluded by Gaussian kernel approaches is quite long, the figure was 

restricted to highlight only those samples with the highest frequency of being 

excluded. Clearly, samples like 35 and 42 were considered outside the AD 

with most of the approaches including both the novel AD approaches. On the 

other hand, a large set of test samples considered exclusively using Gaussian 

kernel approaches may need attention since excluding them just on the basis of one 

set of approaches may not be an enough justification. Table 5.15 provides with 

some useful information about all the test samples listed in Table 5.14.   

Table 5.14  An overview of all the test samples excluded from the AD of logK(OH) model  

with different approaches 

Sample 

ID 

Name   CAS Exp.  

-logK(OH) 

Pred.  

-logK(OH) 

Abs. 

pred.error 

2 Benzene 71-43-2 11.91 11.18 0.73 

9 3-methyl-1-butanethiol 541-31-1 10.28 9.98 0.30 

16 Chlorofluoromethane 593-70-4 13.38 13.15 0.23 

26 1,1-dichloro-2,2,2-

trifluoroethane 

306-83-2 13.44 14.01 0.57 

29 2-chloroethanol 107-07-3 11.85 12.06 0.21 

35 1,1,2,2-tetrachloroethene 127-18-4 12.77 12.54 0.23 

38 2-butanethiol 513-53-1 10.40 10.02 0.38 
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Sample 

ID 

Name   CAS Exp.  

-logK(OH) 

Pred. 

 -logK(OH) 

Abs. 

pred.error 

39 1,3-dioxane 505-22-6 11.04 11.42 0.38 

40 methyl trifluoroacetate 431-47-0 13.28 13.50 0.22 

42 Hexafluorobenzene 392-56-3 12.79 13.42 0.63 

44 Fluorobenzene 462-06-6 12.27 11.47 0.80 

47 isobutyric acid 79-31-2 11.70 11.87 0.17 

50 1,1,2-trichloroethene 79-01-6 11.63 12.33 0.70 

51 dimethyl-nitramine 4164-28-7 11.42 11.94 0.52 

57 1,1,1-trifluoroethane 420-46-2 14.77 14.05 0.72 

58 trans-1,2-dichloroethene 156-60-5 11.75 12.02 0.27 

62 Ethanol 64-17-5 11.52 11.29 0.23 

63 Aniline 62-53-3 9.93 10.31 0.38 

65 Difluoromethane 75-10-5 13.93 13.32 0.61 

78 o-nitrotoluene 88-72-2 12.16 11.89 0.27 

81 ethyl methyl sulphide 624-89-5 11.07 9.77 1.30 

83 hydrogen cyanide 74-90-8 13.52 12.71 0.81 

84 dimethyl disulphide 624-92-0 9.70 10.47 0.77 

85 trimethyl phosphate 512-56-1 11.13 12.18 1.05 

86 1,1-dichloroethene 75-35-4 10.84 12.03 1.19 

87 1,1,1-trichloroethane 71-55-6 13.80 13.50 0.31 

88 o-dichlorobenzene 95-50-1 12.38 12.03 0.35 

90 3-methylfuran 930-27-8 10.03 10.21 0.18 

91 Ethanethiol 75-08-1 10.33 10.20 0.13 

100 m-dichlorobenzene 541-73-1 12.14 12.16 0.02 

101 1,1,1,2-tetrafluoroethane 811-97-2 14.05 14.07 0.01 

102 1-bromoethane 74-96-4 12.46 11.89 0.57 

114 Naphthalene 91-20-3 10.67 10.66 0.02 

116 m-nitrotoluene 99-08-1 12.02 11.94 0.08 

118 1,2,3-trichloropropane 96-18-4 12.37 12.57 0.20 

119 Monomethylhydrazine 60-34-4 10.19 10.53 0.34 

121 p-dichlorobenzene 106-46-7 12.50 12.01 0.49 

122 Methanethiol 74-93-1 10.47 10.29 0.18 

126 N,N-dimethyl-aniline 121-69-7 9.83 9.89 0.06 

128 Trichloromethane 67-66-3 13.00 13.74 0.74 

129 Diethylaminoethanol 100-37-8 10.10 10.00 0.10 

130 Benzonitrile 100-47-0 12.48 11.65 0.83 

133 benzyl alcohol 100-51-6 10.64 10.91 0.26 

138 chloro,difluoromethane 75-45-6 14.32 14.02 0.30 

139 t-butyl hydroperoxide 75-91-2 11.52 11.53 0.01 

140 Glycolaldehyde 141-46-8 11.00 11.28 0.28 

141 4-chlorobenzotrifluoride 98-56-6 12.62 12.56 0.06 

142 dimethyl sulphide 75-18-3 11.37 9.81 1.56 

144 Dichloromethane 75-09-2 12.84 13.11 0.27 

146 1,1-dichloroethane 75-34-3 12.59 12.75 0.15 

157 Propionitrile 107-12-0 12.71 12.35 0.36 

162 1,2-dichloro-1,1-

difluoroethane 

1649-08-7 13.72 13.77 0.05 

169 2-ethoxyethanol 110-80-5 10.92 11.17 0.25 

173 Pyridine 110-86-1 12.31 10.63 1.69 

174 dimethyl-amine 124-40-3 10.18 10.19 0.01 
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Sample 

ID 

Name   CAS Exp. 

 -logK(OH) 

Pred.  

-logK(OH) 

Abs. 

pred.error 

178 2-methyl-2-propanethiol 75-66-1 10.47 10.03 0.44 

182 1,4-naphthoquinone 130-15-4 11.51 11.88 0.37 

184 Methanol 67-56-1 12.03 11.34 0.69 

185 2,4-dichlorophenol 120-83-2 11.98 11.73 0.25 

193 Tetrahydrothiophene 110-01-0 10.70 9.71 0.99 

197 Pyrrole 109-97-7 10.00 9.67 0.33 

199 Furan 110-00-9 10.39 10.38 0.01 

200 Phenol 108-95-2 10.59 10.73 0.14 

202 Methylbenzene 108-88-3 11.21 10.79 0.42 

203 Thiophenol 108-98-5 10.95 10.54 0.41 

204 3-methyl-1,3-pentadiene 4549-74-0 9.87 10.68 0.81 

 

Figure 5.8 provides with a plot derived from the novel kNN based AD 

approach. All the test samples are plotted based on their absolute 

standardized error as well as the number of times they satisfied individual 

training thresholds. As expected, a decreasing pattern was observed from left 

to right, indicating lower error in prediction with increasing satisfied 

threshold conditions (Kj). 
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Figure 5.8  Kj vs. Absolute standardized error plot for test samples of logK(OH) model 

 

Test samples like 35 and 42 (1,1,2,2 tetrachloroethene and 

hexafluorobenzene) did not satisfy any training thresholds, though were not 

associated with the highest prediction error. This fact further confirms the 

fact that extrapolations in the descriptor space may not always reflect the 

outliers in a model’s response domain. It also somehow indicates the model’s 

ability to extrapolate the predictions for test samples that may not be very 

structurally similar to the training space. 

 

5.6  Ready biodegradability of chemicals 

5.6.1 Model description 

OECD principle 1: A defined endpoint 

This set of classification models is aimed at evaluating the persistence of 

chemical substances in the environment by predicting their ready 
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biodegradability. Since the accumulation of persistent chemicals could lead 

to hazardous impacts on a longer time scale, REACH regulation requires the 

information relevant to the ready biodegradability of chemical substances 

that are produced or imported in quantities greater than one ton per year. 

Being classification models, their resulting predictions for query chemicals 

are either if they are Ready Biodegradable (RB) or not ready biodegradable 

(NRB) [39]. 

OECD principle 2: An unambiguous algorithm 

Three QSAR models were developed using the following different 

classification modelling techniques to incorporate linear, non-linear and local 

models: k Nearest Neighbours (kNN), partial least squares discriminant 

analysis (PLSDA) and support vector machines (SVM). Since individual 

models can account for different amounts of noise, two consensus models 

were developed in order to improve the overall quality in predictions. The 

first consensus model allocated the most frequent class predicted for a query 

chemical using the above three classification models. On the other hand, the 

second consensus model allocated a given query chemical to a class that was 

predicted the same with all the three individual models; otherwise no class 

was assigned. Model calibration in all the cases was carried out using a data 

set of 837 molecules while it was validated on a test set consisting of 218 

molecules. Further, the developed models were evaluated on an external 

validation test set consisting of 670 molecules. Table 5.15 provides with an 

overview of all the molecular descriptors from the DRAGON 6 package used 

in developing the three classification models [47]. The descriptor selection 

for this set of models was performed using Genetic Algorithm (GA).
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Table 5.15  List of descriptors used to develop the biodegradability models. 

Descriptor Description Model  

B01[C-Br] presence/absence of C−Br at topological distance 1 PLSDA  

B03[C-Cl] presence/absence of C−Cl at topological distance 3 PLSDA  

B04[C-Br] presence/absence of C−Br at topological distance 4 PLSDA  

C% percentage of C atoms kNN− PLSDA  

C-026 R−CX−R SVM  

F01[N-N] frequency of N−N at topological distance 1 kNN  

F02[C-N] frequency of C−N at topological distance 2 SVM  

F03[C-N] frequency of C−N at topological distance 3 kNN  

F03[C-O] frequency of C−O at topological distance 3 PLSDA  

F04[C-N] frequency of C−N at topological distance 4 kNN−PLSDA  

HyWi_B(m) hyper-Wiener-like index (log function) from Burden matrix 

weighted by mass 

PLSDA  

J_Dz(e) Balaban-like index from Barysz matrix weighted by Sanderson 

electronegativity 

kNN  

LOC lopping centric index PLSDA  

Me mean atomic Sanderson electronegativity (scaled on Carbon 

atom) 

PLSDA  

Mi mean first ionization potential (scaled on carbon atom) PLSDA  

N-073 Ar2NH/Ar3N/Ar2N−Al/R·· ·N·· ·R PLSDA  

nArCOOR number of esters (aromatic) SVM  

nArNO2 number of nitro groups (aromatic) PLSDA  

nCb- number of substituted benzene C(sp2) kNN−SVM  

nCIR number of circuits PLSDA  

nCp number of terminal primary C(sp3) kNN  

nCrt number of ring tertiary C(sp3) SVM  

nCRX3 number of CRX3 PLSDA  

nHDon number of donor atoms for H-bonds (N and O) SVM  

nHM number of heavy atoms kNN  

nN number of nitrogen atoms SVM  

nN-N number of N hydrazines PLSDA−SVM  

nO number of oxygen atoms kNN−PLSDA  

NssssC number of atoms of type ssssC kNN−SVM  

nX number of halogen atoms SVM  

Psi_i_1d intrinsic state pseudoconnectivity index−type 1d PLSDA  

Psi_i_A intrinsic state pseudoconnectivity index�type S average SVM  

SdO sum of dO E-states PLSDA  

SdssC sum of dssC E-states kNN  

SM6_B(m) spectral moment of order 6 from Burden matrix weighted by 

mass 

SVM  

SM6_L spectral moment of order 6 from Laplace matrix PLSDA  

SpMax_A leading eigenvalue from adjacency matrix (Lovasz−Pelikan 

index) 

PLSDA  

SpMax_B(m

) 

leading eigenvalue from Burden matrix weighted by mass SVM  

SpMax_L leading eigenvalue from Laplace matrix kNN−PLSDA−SVM  

SpPosA_B(p

) 

normalized spectral positive sum from Burden matrix weighted 

by polarizability 

PLSDA  

TI2_L second Mohar index from Laplace matrix PLSDA  
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OECD principle 3: A defined domain of applicability 

 

The article from where these models were retrieved does not provide with 

any direct evaluation of the model’s AD. However, an article focussing 

exclusively on evaluating their AD is currently in preparation. 

OECD principle 4: Appropriate measures of goodness-of-fit, robustness and 

predictivity 

Table 5.16 provides with the default model statistical parameters, retaining 

all the test samples within the model’s AD. It should be noted that for the 

second consensus model the not assigned molecules were not considered to 

evaluate the TP and TN. 

OECD principle 5: A mechanistic interpretation, if possible 

The authors provided following a posteriori mechanistic interpretation to 

relate the chosen set of descriptors to the modelled endpoint:  

The usefulness of the chosen descriptors was interpreted deriving score and 

loading plots from the PCA study on the training set and projecting test set 

molecules over the training space. For the PLSDA model, the descriptors 

were related to biodegradability directly using the latent variables used for 

model development. 

kNN model: Descriptors encoding information about the substituted 

benzenes and nitrogen (functional group counts based descriptor nCb- and 

2D atom pairs based descriptors F01[N-N], F04[C-N], and F03[C-N]) 

differentiated the NRB from RB molecules based on the presence of cyclic 

and nitro groups. nHM indicated the presence of heavy atoms which may be 

more relevant to the NRB molecules. Since RB molecules are less branched 

than NRB ones, descriptors SdssC, NssssC and nCp were more oriented 

towards the NRB molecules indicating that increased branching molecules 

could lower the ready biodegradability.  
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Table 5.16  Model statistics for the biodegradability models. 

Model 

       

Desc 

           

k/LVs/

c   Fitting   test set   validation set 

ER Sn Sp ER  Sn Sp ER Sn Sp 

kNN 12 6 0.14 0.84 0.89 0.15 0.81 0.9 0.17 0.75 0.91 

PLSDA 23 5 0.14 0.88 0.83 0.15 0.83 0.87 0.17 0.80 0.86 

SVM 14 5 0.14 0.81 0.92 0.14 0.82 0.91 0.18 0.74 0.91 

consensus 

1 41 0.11 0.86 0.91 0.13 0.82 0.92 0.17 0.76 0.91 

consensus 

2 41 0.07 0.91 0.95 0.09 0.88 0.94 0.13 0.81 0.94 

        (19% not assigned)   (15% not assigned)   (13% not assigned) 

 

Desc: Descriptors used, k/LVs/c: indicates the optimal parameters, no. of nearest neighbours (k) for kNN, 

number of latent variables (LVs) for PLSDA and the cost (c) for SVM. ER: Error Rate, Sn: Sensitivity 

indicating correctly predicted non ready biodegradable, Sp: Specificity indicating correctly predicted ready 

biodegradable 

 

PLSDA model: Matrix based descriptors contained information about the 

molecular branching and based on the significant latent variables used, they 

were clearly oriented towards the NRB molecules, which is in agreement 

with the findings that lower branching favours ready biodegradation.  

The descriptors containing information about cycles, nitrogen and halogens 

were oriented towards NRB molecules like for the kNN model. Descriptors 

indicating the presence of oxygen further differentiated the RB from NRB 

molecules, indeed functional groups with oxygen atoms assist 

biodegradation process. 

SVM model: Several descriptors encoding information about the molecular 

branching, aromatic groups and halogens (including matrix-based 

descriptors, constitutional indices and atom-centred fragments) differentiated 

the RB from NRB molecules, being more oriented towards the latter ones. 
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To better understand the usefulness of matrix-based descriptors towards 

ready biodegradability, their encoded information was further explored by 

performing OLS regression between these targeted matrix-based descriptors 

and DRAGON molecular descriptors. As a result of this analysis, these 

matrix-based descriptors were associated with properties like molecular 

branching, cyclicity and molecular size which are significant parameters 

impacting the biodegradability.  

5.6.2 AD evaluation on consensus models 

One of the important aspects of considering this case study is to perform the 

AD evaluation on consensus models. Since consensus models are mainly 

relying on the output derived from the set of primary models (in this case, 

kNN, PLSDA and SVM models), following strategy was adopted to deal 

with defining the AD of the resulting two consensus models.  

The AD of all the three individual models was evaluated like for the other 

case studies using all the different classical and novel AD approaches 

discussed earlier (though the results are not discussed for these models). For 

both the consensus models, a given test sample was considered within its AD 

with a given approach only if it was retained inside the AD of all the three 

individual models. The decision rule could be interesting since the final 

decision to retain or discard a test sample in the AD depends on the output 

from three different models-local, linear and non-linear. The decision rule 

adopted towards defining the AD resembles the criterion used by the second 

model in considering a test sample to be RB or NRB.  

Tables 5.17 and 5.18 provide with an overview of the results derived with 

different classical and novel AD approaches on first and second consensus 

models, respectively. The test samples listed being outside the AD are the 

same since the same AD criterion was followed by both the consensus 

models. The difference however lies in the model statistical parameters since 

the predicted responses for both these models are different. Moreover, there 

are some test samples with unassigned class in the case of second consensus 
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model. In both the cases, no significant impacts were observed on the 

resulting statistical parameters.  

In theory, a test sample can only be considered within the consensus model’s 

AD provided that it was included within the AD of three individual models 

which were based on very diverse algorithms towards model development. If 

a test sample falls inside the AD of local, linear and non-linear models, this 

further adds to the reliability in considering such test samples within the 

model’s AD. However, such strict criterion may also make the defined AD 

more restrictive to the test samples. For both the consensus models, none of 

the approaches were able to significantly improve the model statistical 

parameters retaining reasonable number of test samples within the model’s 

AD. 

 

 

AD method Samples 

outside 

AD (%) 

ER Sn Sp List of samples outside AD 

Bounding Box 4.1 0.14 0.82 0.91 2 73 130 166 181 189 192 215 217 

PCA Bounding Box  0.5 0.13 0.82 0.92 217 

Convex Hull - - -    - - 

Leverage approach 13.3 0.13 0.84 0.90  2 19 24 27 57 73 74 76 77 78 80 83 

91 94 96 130 134 146 159 164 166 

186 189 190 192 200 215 216 217 

Centroid dist. (Euclidean, 95 

percentile) 

9.2 0.14 0.82 0.91  57 73 74 76 77 78 94 134 159 164 

166 172 186 190 192 200 202 215 

216 

Centroid dist. (Manhattan, 

95 percentile) 

8.7 0.14 0.82 0.91  57 73 74 76 77 78 91 94 134 151 152 

159 166 192 200 202 215 216 217 

Centroid dist. (Mahalanobis, 

95 percentile) 

10.6 0.13 0.83 0.90  2 27 57 73 74 76 77 78 83 91 94 96 

130 134 159 164 166 186 189 192 

200 215 217 

kNN general thr (Euclidean, 

k=5) 

10.1 0.13 0.83 0.90  27 57 73 76 77 91 94 134 147 151 

152 164 166 186 189 190 192 196 

200 215 216 217 

kNN general thr. 

(Manhattan, k=5) 

8.7 0.14 0.82 0.91  73 76 77 80 91 94 134 147 151 152 

166 186 189 190 192 200 215 216 

217 

kNN general thr. 

(Mahalanobis, k=5) 

16.1 0.13 0.84 0.90  2 24 27 57 73 74 75 76 77 78 80 83 

90 91 94 130 134 147 151 152 158 

159 164 166 173 186 189 190 192 

196 200 212 215 216 217 

Table 5.17  An overview of the results for AD evaluation on the first consensus model 
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AD method Samples 

outside 

AD (%) 

ER Sn Sp List of samples outside AD 

Gaussian kernel: fixed 34.9 0.13 0.85 0.89  2 5 7 19 24 27 30 47 48 51 57 58 62 

64 67 69 72 73 75 76 77 78 79 80 82 

83 88 89 90 91 92 94 96 105 106 110 

111 112 113 115 116 119 121 122 

124 126 127 130 133 134 135 137 

140 141 142 144 146 147 148 149 

151 152 153 154 157 158 159 160 

161 164 166 168 172 173 174 178  

Gaussian kernel: optimized 88.5 0.00 1.00 1.00 All test samples except 9 14 15 16 17 

18 22 41 46 53 74 97 103 108 109 

117 128 151 152 153 154 155 156 

157 158 167 171 201 202 203 205 

206 208 209 

Gaussian kernel: variable 14.7 0.13 0.84 0.90  24 27 57 73 74 76 77 78 83 91 94 105 

134 135 147 151 152 158 159 161 

164 166 186 187 189 190 192 196 

200 215 216 217 

Adaptive kernel 11.9 0.13 0.83 0.90  27 57 73 74 75 76 77 78 83 94 105 

134 147 151 152 164 166 186 189 

190 192 196 200 215 216 217 

Epanechnikov kernel 20.6 0.14 0.84 0.89  2 24 27 57 73 75 76 77 78 80 83 90 

91 94 96 110 112 116 130 133 134 

135 144 147 151 152 154 158 159 

161 164 166 172 173 185 186 187 

189 190 192 196 200 215 216 217 

kNN kernel 11.9 0.13 0.84 0.90  24 27 57 73 74 76 77 78 83 91 94 134 

147 151 152 164 166 186 189 190 

192 196 200 215 216 217 

Triangular kernel 77.1 0.05  1.00 All test samples except 9 11 12 13 14 

15 16 17 18 22 29 33 34 38 39 41 44 

46 53 59 60 66 68 74 84 87 97 99 100 

102 103 108 109 114 117 128 162 

163 165 167 169 170 171 177 183 

201 203 205 206 208 209  

Novel kNN approach 

(Euclidean) 

11.0 0.13 0.83 0.90  27 57 73 75 76 77 80 94 134 152 154 

158 161 164 166 173 186 189 190 

192 200 215 216 217 

Novel kNN approach 

(Manhattan) 

11.9 0.14 0.81 0.90 2 57 73 76 77 80 91 94 105 134 135 

147 151 152 161 164 166 186 187 

189 190 192 200 215 216 217 

Novel kNN approach 

(Mahalanobis) 

11.5 0.13 0.83 0.90  2 27 73 76 77 90 91 94 110 134 147 

151 152 158 164 166 186 187 189 

190 192 200 215 216 217 

Novel LCMD approach 11.5 0.14 0.83 0.90 2 27 57 73 74 76 77 78 83 91 94 96 

130 134 146 159 164 166 186 189 

192 200 215 216 217 
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AD method 

 

 

Samples 

outside 

AD (%) 

ER Sn Sp List of samples outside AD 

Bounding Box 4.1 0.08 0.89 0.94 2 130 166 181 189 192 215 217 

PCA Bounding Box 0.5 0.08 0.90 0.94 217 

Convex Hull - - - - - 

Leverage approach 13.3 0.07 0.93 0.93 19 24 27 57 73 74 76 77 78 80 83 

91 94 96 130 134 146 159 164 166 

186 189 190 192 200 215 216 217 

 

Centroid dist. (Euclidean, 95 

percentile) 

9.2 0.08 0.90 0.94  57 73 74 76 77 78 94 134 159 164 

166 172 186 190 192 200 202 215 

216 

 

Centroid dist. (Manhattan, 95 

percentile) 

8.7 0.08 0.90 0.94 57 73 74 76 77 78 91 94 134 151 

152 159 166 192 200 202 215 216 

217 

 

Centroid dist. (Mahalanobis, 95 

percentile) 

10.6 0.08 0.91 0.93  2 27 57 73 74 76 77 78 83 91 94 

96 130 134 159 164 166 186 189 

192 200 215 217 

 

 

kNN general thr (Euclidean, k=5) 10.1 0.08 0.91 0.93  27 57 73 76 77 91 94 134 147 151 

152 164 166 186 189 190 192 196 

200 215 216 217 

 

kNN general thr. (Manhattan, k=5) 8.7 0.08 0.90 0.93 73 76 77 80 91 94 134 147 151 152 

166 186 189 190 192 200 215 216 

217 

 

kNN general thr. (Mahalanobis, k=5) 16.1 0.07 0.93 0.93  2 24 27 57 73 74 75 76 77 78 80 

83 90 91 94 130 134 147 151 152 

158 159 164 166 173 186 189 190 

192 196 200 212 215 216 217 

 

Gaussian kernel: fixed 34.9 0.07 0.93 0.92 5 7 19 24 27 30 47 48 51 57 58 62 

64 67 69 72 73 75 76 77 78 79 80 

82 83 88 89 90 91 92 94 96 105 106 

110 111 112 113 115 116 119 121 

122 124 126 127 130 133 134 135 

137 140 141 142 144 146 147 148 

149 151 152 153 154 157 158 159 

160 161 164 166 168 172 173 174 

178  

 

Gaussian kernel: optimized 88.5 0.00 1.00 1.00 All test samples except 9 14 15 16 

17 18 22 41 46 53 74 97 103 108 

109 117 128 151 152 153 154 155 

156 157 158 167 171 201 202 203 

205 206 208 209 

Gaussian kernel: variable 14.7 0.07 0.93 0.93  24 27 57 73 74 76 77 78 83 91 94 

105 134 135 147 151 152 158 159 

161 164 166 186 187 189 190 192 

196 200 215 216 217 

 

Table 5.18  An overview of the results for AD evaluation on the second consensus model 
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AD method 

 

 

Test 

outside 

AD (%) 

ER Sn Sp List of samples outside AD 

Adaptive kernel 11.9 0.08 0.91 0.93  27 57 73 74 75 76 77 78 83 94 105 

134 147 151 152 164 166 186 189 

190 192 196 200 215 216 217 

 

Epanechnikov kernel 20.6 0.08 0.93 0.92 24 27 57 73 75 76 77 78 80 83 90 

91 94 96 110 112 116 130 133 134 

135 144 147 151 152 154 158 159 

161 164 166 172 173 185 186 187 

189 190 192 196 200 215 216 217 

 

kNN kernel 11.9 0.07 0.93 0.93  24 27 57 73 74 76 77 78 83 91 94 

134 147 151 152 164 166 186 189 

190 192 196 200 215 216 217 

 

Triangular kernel 77.1 0.08 0.95 1.00 All test samples except 9 11 12 13 

14 15 16 17 18 22 29 33 34 38 39 

41 44 46 53 59 60 66 68 74 84 87 

97 99 100 102 103 108 109 114 

117 128 162 163 165 167 169 170 

171 177 183 201 203 205 206 208 

209 

Novel kNN approach (Euclidean) 11.0 0.07 0.91 0.93  27 57 73 75 76 77 80 94 134 152 

154 158 161 164 166 173 186 189 

190 192 200 215 216 217 

 

Novel kNN approach (Manhattan) 11.9 0.09 0.89 0.93 57 73 76 77 80 91 94 105 134 135 

147 151 152 161 164 166 186 187 

189 190 192 200 215 216 217 

 

Novel kNN approach (Mahalanobis) 11.5 0.08 0.91 0.93 27 73 76 77 90 91 94 110 134 147 

151 152 158 164 166 186 187 189 

190 192 200 215 216 217 

 

Novel LCMD approach 11.5 0.08 0.91 0.93 2 27 57 73 74 76 77 78 83 91 94 96 

130 134 146 159 164 166 186 189 

192 200 215 216 217 
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Figure 5.9  Consensus test samples excluded from the AD of consensus models 

 

Figure 5.9 provides with an overview of the most commonly excluded test 

samples from the AD of the both consensus models.  

Table 5.19 provides with an overview of all the test samples considered 

outside the AD with different approaches. It enlists almost entire test set 

since with approaches like fixed and optimized gaussian kernel as well as 

triangular kernel, a huge number of test samples were considered as outside 

the AD. For each of the test sample listed in this table, its experimental 

response as well as the predicted class from both the consensus models were 

provided. Several of the test samples listed in Figure 5.9 were predicted 

reliably even if they were rendered as unreliable in the model’s descriptor 

space being excluded from the model’s AD with several diverse approaches. 

This resembles the observation made for the regression models dealt as case 

studies earlier in this thesis work. This implies that the results derived in a 

model’s descriptor space may not necessarily reflect the results derived in 

the response domain of that model. 
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Sample  
    ID 

Name CAS Exp.class consensus 

1 

consensus 

2 

1 n-heptane 
142-82-5 
 

RB RB RB 

2 ethylene oxide 75-21-8 RB RB RB 

3 Toluene 108-88-3 RB RB RB 

4 di-n-butylamine 111-92-2 RB RB RB 

5 3,7-dimethyl-1,6-octadien-3-ol 78-70-6 RB NRB NRB 

6 3,6-dioxadecan-1-ol 112-34-5 RB RB RB 

7 n-butyraldehyde 123-72-8 RB RB RB 

8 4-hydroxy-4-methyl-2-pentanone 123-42-2 RB NRB 
not 

assigned 

10 bis(2-ethylhexyl) fumarate 141-02-6 RB RB RB 

11 12-hydroxyoctadecanoic acid 106-14-9 RB RB RB 

12 Nonadecaneonitrile 28623-46-3 RB RB RB 

13 (dichloromethyl)benzene 98-87-3 RB NRB NRB 

19 bis(2-hydroxyethyl) terephthalate 959-26-2 RB RB RB 

20 4-hydroxybenzonitrile 767-00-0 RB NRB 
not 

assigned 

21 p-toluenesulfonic acid 104-15-4 RB RB 
not 

assigned 

23 methyl 3-oxo-2-pentylcyclopentylacetate 24851-98-7 RB RB 
not 

assigned 

24 Imidazole 288-32-4 RB NRB NRB 

25 3-hydroxypyridine 109-00-2 RB RB RB 

26 1-hexene 592-41-6 RB RB RB 

27 isopropyl bromide 75-26-3 RB NRB NRB 

28 n-butylamine 109-73-9 RB RB RB 

29 hexadecan-1-ol 36653-82-4 RB RB RB 

30 2-methoxyethanol 109-86-4 RB RB RB 

31 propyl acetate 109-60-4 RB RB RB 

32 13-docosenoamide 112-84-5 RB RB 
not 

assigned 

33 adipic acid 124-04-9 RB RB RB 

34 2-methoxyethyl acrylate 3121-61-7 RB RB RB 

35 2-hydroxypropyl methacrylate 923-26-2 RB RB RB 

36 2,4-hexadienic acid (synonym:sorbic acid) 110-44-1 RB RB RB 

37 2-methylenesuccinic acid 97-65-4 RB RB RB 

38 butyl acetoacetate 591-60-6 RB RB RB 

39 Aniline 62-53-3 RB NRB 
not 

assigned 

40 benzyl methacrylate 2495-37-6 RB RB RB 

42 stylene oxide 96-09-3 RB NRB 
not 

assigned 

43 benzoylaminoacetic acid 495-69-2 RB RB RB 

44 2-(methylamino)benzoic acid 119-68-6 RB RB 
not 

assigned 

45 alpha-terpineol 98-55-5 RB NRB NRB 

47 
3-acetyl-6-methyl-2,4(3H)-pyrandione 

(synonym:dehydroacetic acid) 
520-45-6 RB RB RB 

48 Xylitol 87-99-0 RB RB RB 

49 Benzoin 119-53-9 RB RB 
not 

assigned 

50 beta-alanine 107-95-9 RB RB RB 

Table 5.19  An overview of all the test samples excluded from the AD of both consensus models with 

different approaches 
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Sample 

ID 
Name CAS Exp.class 

consensus 

1 

consensus 

2 

51 1-chlorooctane 111-85-3 RB RB 
not 

assigned 

52 2-ethoxyethanol 110-80-5 RB RB RB 

54 methyl dodecanoate 111-82-0 RB RB RB 

55 succinic acid 110-15-6 RB RB RB 

56 2-hydroxyethyl acrylate 818-61-1 RB RB RB 

57 2-hydroxy-1,2,3-propanetricarboxylic acid 77-92-9 RB RB 
not 

assigned 

58 DL-tartaric acid 133-37-9 RB RB RB 

59 sec-butyl alcohol 78-92-2 RB RB RB 

60 terephthalic acid 100-21-0 RB RB RB 

61 Phenylacetonitrile 140-29-4 RB RB RB 

62 1-methyl-4-(1-methylvinyl)cyclohexene 138-86-3 RB NRB 
not 

assigned 

63 cyclohexyl methacrylate 101-43-9 RB RB RB 

64 2-(methylamino)ethanol 109-83-1 RB RB RB 

65 1,1'-iminodi-2-propanol 110-97-4 RB RB RB 

66 2-[2-(2-methoxyethoxy)ethoxy]ethanol 112-35-6 RB RB RB 

67 chloroacetic acid 79-11-8 RB RB RB 

68 dioctyl phthalate(synonym:di-n-octyl phthalate) 117-84-0 RB RB RB 

69 dicyclohexyl benzene-1,2-dicarboxylate 84-61-7 RB NRB 
not 

assigned 

70 beta-naphthol 135-19-3 RB NRB NRB 

71 Pyridine 110-86-1 RB NRB 
not 

assigned 

72 sorbitan monolaurate 1338-39-2 RB RB RB 

73 Perfluoro(1,2-dimethylcyclohexane) 306-98-9 NRB NRB NRB 

75 
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane 

(synonym:DDT) 
50-29-3 NRB NRB NRB 

76 2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole 3846-71-7 NRB NRB NRB 

77 
2,4-di-tert-butyl-6-(5-chloro-2H-1,2,3-benzotriazol-2-

yl)phenol 
3864-99-1 NRB NRB NRB 

78 

mixture of 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-

hexahydro-4,7-methano-1H-indene, 1,4,5,6,7,8,8-

heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H-indene 

and their analogue compounds 

76-44-8 NRB NRB NRB 

79 
1(a),2(a),3(a),4(e),5(e),6(e)-hexachlorocyclohexane 

(synonym:gamma-BHC) 
608-73-1 NRB NRB NRB 

80 trichloronitromethane (synonym:chloropicrine ) 76-06-2 NRB NRB NRB 

81 N,N,N',N'-Tetramethyl-2,2'-oxybis(ethylamine) 3033-62-3 NRB NRB 
not 

assigned 

82 1,3-dimethylurea 96-31-1 NRB RB 
not 

assigned 

83 2,2-Dibromo-2-cyanoacetamide 10222-01-2 NRB NRB NRB 

84 2-Chloro-4-nitroaniline 121-87-9 NRB NRB NRB 

85 4-nitro-o-anisidine 97-52-9 NRB NRB NRB 

86 2-chloro-1,4-dimethoxybenzene 2100-42-7 NRB NRB 
not 

assigned 

87 3-Methyl-4-(methylsulfanyl)phenol 3120-74-9 NRB NRB NRB 

88 2-amino-5-nitrobenzonitrile 17420-30-3 NRB NRB NRB 

89 1,2-difluorobenzene 367-11-3 NRB NRB 

not 

assigned 
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Sample 

ID 
Name CAS Exp.class 

consensus 

1 

consensus 

2 

90 
N,N,N',N'-Tetrakis(oxiran-2-ylmethyl)-4,4'-

methylenedianiline 
28768-32-3 NRB NRB NRB 

91 

1,3,5-tris(epoxypropyl)triazinane-2,4,6-trione 

(synonym:1,3,5-tris(epoxypropyl)-1,3,5-triazine-

2,4,6(1H,3H,5H)-trione) 

2451-62-9 NRB NRB NRB 

92 

9-methoxy-7H-furo(3,2-g)chromen-7-one (synonym:9-

methoxy-7H-furo(3,2-g)[1]benzopyran-7-one or 

methoxalen ) 

298-81-7 NRB NRB 
not 

assigned 

93 3(or4)-methyl-4-cyclohexen-1,2-dicarboxylic anhydride 5333-84-6 NRB NRB 
not 

assigned 

94 1,1,11-trihydroperfluoroundecanol 307-70-0 NRB NRB NRB 

95 2-Ethylhexyl hydrogen (2-ethylhexyl)phosphonate 14802-03-0 NRB NRB NRB 

96 dibutyltin oxide 818-08-6 NRB NRB 
not 

assigned 

98 (2-chloroethyl)benzene 622-24-2 NRB NRB NRB 

99 o-chlorotoluene 95-49-8 NRB NRB NRB 

100 p-chlorotoluene 106-43-4 NRB NRB NRB 

   101 1-chloro-4-isopropenylbenzene 1712-70-5 NRB NRB NRB 

102 N,N-diethylaniline 91-66-7 NRB NRB NRB 

104 2,4,6-trichloroaniline 634-93-5 NRB NRB NRB 

105 N-nitrosodiphenylamine 86-30-6 NRB NRB NRB 

106 Dinonylphenol 1323-65-5 NRB NRB NRB 

107 2,4-dinitrophenol 51-28-5 NRB NRB NRB 

110 4-bromo-2,5-dichlorophenol 1940-42-7 NRB NRB NRB 

111 dibromocresyl glycidyl ether 30171-80-3 NRB NRB NRB 

112 1,4-bis(benzoyloxyimino)-2,5-cyclohexadiene 120-52-5 NRB NRB NRB 

113 bis(alpha,alpha-dimethylbenzyl) peroxide 80-43-3 NRB NRB NRB 

114 4-vinyl-1-cyclohexene 100-40-3 NRB NRB NRB 

115 Menthol 1490-04-6 NRB NRB 
not 

assigned 

116 tris(dimethylphenyl) phosphate 25155-23-1 NRB NRB NRB 

118 4-(1-methyl-1-phenylethyl)phenol 599-64-4 NRB NRB NRB 

119 1-chloronaphthalene 90-13-1 NRB NRB NRB 

120 1-methoxynaphthalene 2216-69-5 NRB NRB 
not 

assigned 

121 2-tert-butyl-9,10-anthraquinone 84-47-9 NRB NRB NRB 

122 2-chloroanthraquinone 131-09-9 NRB NRB NRB 

123 2-naphthalenethiol 91-60-1 NRB NRB NRB 

124 Carbazole 86-74-8 NRB NRB NRB 

125 diphenylmethyl 2-chloroethyl ether 32669-06-0 NRB NRB NRB 

126 5-chloro-2-(2,4-dichlorophenoxy)phenol 3380-34-5 NRB NRB NRB 

127 bis(1-methyl-2-chloroethyl) ether 108-60-1 NRB NRB NRB 

129 N,N-diethyl-m-toluamide 134-62-3 NRB NRB NRB 

130 7H-benzo[d,e]anthracen-7-one (synonym:benzanthrone) 82-05-3 NRB NRB NRB 

131 12-dodecanelactam 947-04-6 NRB RB 
not 

assigned 

132 Benzothiazole 95-16-9 NRB NRB NRB 

133 Dichloropropane 78-87-5 NRB NRB NRB 

134 
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluorodecan-1-ol 
678-39-7 NRB NRB NRB 

135 
1,1-dichloro-N-[(dimethylamino)sulfonyl]-1-fluoro-N-

phenylmethanesulfenamide 
1085-98-9 NRB NRB NRB 
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Sample 

ID 

Name CAS Exp.class consensus 

1 

consensus 

2 

136 Acenaphthylene 208-96-8 NRB NRB NRB 

137 Chlorotriphenylmethane 76-83-5 NRB NRB NRB 

138 Triethanolamine 102-71-6 NRB RB 
not 

assigned 

139 ethyl carbamate 51-79-6 NRB RB RB 

140 
O,O-dimethyl S-(N-methylcarbamoylmethyl) dithio 

phosphate 
60-51-5 NRB NRB NRB 

141 N,N-bis(octylphenyl)amine 26603-23-6 NRB NRB NRB 

142 p,p'-dioctyldiphenylamine 101-67-7 NRB NRB NRB 

143 o-toluenesulfonamide 88-19-7 NRB NRB NRB 

144 tri-p-cumenyl phosphate 26967-76-0 NRB NRB NRB 

145 Benzenesulfonamide 98-10-2 NRB NRB NRB 

146 
5-methylbicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic 

anhydride 
25134-21-8 NRB NRB NRB 

147 1-(2,5-dichloro-4-sulfophenyl)-3-methyl-5-pyrazolone 84-57-1 NRB NRB NRB 

148 2-mercaptoimidazoline 96-45-7 NRB NRB NRB 

149 pyridine-2,5-dicarboxylic acid 100-26-5 NRB RB RB 

150 tetrahydro-1,4-oxazine 110-91-8 NRB RB RB 

151 1,3,5-tris(2-hydroxyethyl)isocyanuric acid 839-90-7 NRB NRB NRB 

152 4-anilino-3-nitrobenzenesulphonanilide 5124-25-4 NRB NRB NRB 

153 2-isopropyl-6-methyl-4-pyrimidinol 2814-20-2 NRB NRB NRB 

154 1,3-dichloropropene 542-75-6 NRB NRB 
not 

assigned 

155 3-methoxypropylamine 5332-73-0 NRB RB RB 

156 N,N-dimethylacrylamide 07/03/2680 NRB RB RB 

157 3,3'-iminodipropaneonitrile 111-94-4 NRB NRB 
not 

assigned 

158 tetramethylthiuram disulphide 137-26-8 NRB NRB NRB 

159 tris(1,3-dichloro-2-propyl) phosphate 13674-87-8 NRB NRB NRB 

160 1-chloro-2,3-epoxy-2-methylpropane 598-09-4 NRB NRB NRB 

161 1,1',1'',1'''-(ethylenedinitrilo)tetrakis(propan-2-ol) 102-60-3 NRB NRB NRB 

162 N-methylaniline 100-61-8 NRB NRB NRB 

163 N-methylacetanilide 579-10-2 NRB NRB NRB 

164 N,N'-diphenyl-p-phenylenediamine 74-31-7 NRB NRB NRB 

165 N,N-dimethylbenzylamine 103-83-3 NRB NRB 
not 

assigned 

166 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene 81-15-2 NRB NRB NRB 

168 2,4-dichlorophenyl 4'nitrophenyl ether 1836-75-5 NRB NRB NRB 

170 2-nitro-4-methoxyaniline 96-96-8 NRB NRB NRB 

172 bis[1-(tert-butylperoxy)-1-methylethyl]benzene 25155-25-3 NRB NRB NRB 

173 2,6,6-trimethylbicyclo[3.1.1]heptyl-2-hydroperoxide 5405-84-5 NRB NRB NRB 

174 3,3,5-trimethylcyclohexanone 873-94-9 NRB NRB NRB 

175 Terphenyl 26140-60-3 NRB NRB NRB 

176 1-methylnaphthalene 90-12-0 NRB NRB NRB 

177 4,4'-methylenediphenol 620-92-8 NRB NRB NRB 

178 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid 5809-23-4 NRB NRB 
not 

assigned 

179 isobutyl 2-naphthyl ether 2173-57-1 NRB NRB NRB 

180 2-Aminonaphthalene-1,5-disulfonic acid 117-62-4 NRB NRB NRB 

181 
decahydronaphthalene(mixture of cis-form and trans-

form) 
91-17-8 NRB NRB NRB 
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Sample 

ID 

Name CAS Exp.class consensus 

1 

consensus 

2 

182 (Tricyclo[5.2.1.0(2,6)]decane-4,8-diyl)dimethanol 26896-48-0 NRB NRB NRB 

183 Anthracene 120-12-7 NRB NRB NRB 

184 2-aminoanthraquinone 117-79-3 NRB NRB NRB 

185 1,4-Bis(isopropylamino)-9,10-anthraquinone 14233-37-5 NRB NRB NRB 

186 1H-1,2,3-benzotriazole 95-14-7 NRB NRB NRB 

187 
5,5-diphenylImidazolidine-2,4-dione (synonym:5,5-

diphenyl-2,4-Imidazolidinedione ) 
57-41-0 NRB NRB NRB 

188 Thioacetamide 62-55-5 NRB NRB 
not 

assigned 

189 1,1,2,2-tetrabromoethane 79-27-6 NRB NRB NRB 

190 2,2-dichloro-1,1,1-trifluoroethane 306-83-2 NRB NRB NRB 

191 3,4-dichloro-1-butene 760-23-6 NRB NRB NRB 

192 perfluoro(tributylamine) 311-89-7 NRB NRB NRB 

193 2,2'-dichlorodiethyl ether 111-44-4 NRB NRB 
not 

assigned 

194 2-(isopropoxy)ethanol 109-59-1 NRB RB RB 

195 3,5,5-trimethylhexanal 5435-64-3 NRB NRB NRB 

196 Trichloroacetaldehyde 75-87-6 NRB NRB NRB 

197 Docosanamide 3061-75-4 NRB RB 
not 

assigned 

198 dimethyl phosphonate 868-85-9 NRB RB RB 

199 tri-n-pentyl phosphate 2528-38-3 NRB NRB NRB 

200 Perfluorooctanoic acid 335-67-1 NRB NRB NRB 

202 Pentabromotoluene 87-83-2 NRB NRB NRB 

204 4'-aminoacetanilide 122-80-5 NRB NRB NRB 

207 6-tert-butyl-2,4-xylenol 1879-09-0 NRB NRB NRB 

209 4-(methylthio)phenol 1073-72-9 NRB NRB 
not 

assigned 

210 2-methyl-3-(4-tert-butylphenyl)propionaldehyde 80-54-6 NRB NRB NRB 

211 4,6-dinitro-o-cresol 534-52-1 NRB NRB NRB 

212 
O,O-diethyl-o-(alpha-cyanobenzylideneamino)thio 

phosphate 
14816-18-3 NRB NRB NRB 

213 dimethyl 2,6-naphthalenedicarboxylate 840-65-3 NRB RB 
not 

assigned 

214 2,2,6,6-Tetramethylpiperidin-4-on 826-36-8 NRB NRB NRB 

215 
2,2',2''-(2,4,6-trioxo-1,3,5-triazinane-1,3,5-triyl)triethyl 

triacrylate 
40220-08-4 NRB NRB NRB 

216 
2-{N-(2-cyanoethyl)-N-[4-(4-

nitrophenylazo)phenyl]amino}ethyl benzoate 
40690-89-9 NRB NRB NRB 

217 
chlorophthalocyaninatocopper(II)(synonym:pygmentblue-

15) 
12239-87-1 NRB NRB NRB 

218 polychlorobiphenyl(number of chlorine is 2-10) 25512-42-9 NRB NRB NRB 
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General conclusions and future prospects 

 

 
It is crucial to know the limitations of QSAR models for reliable predictions 

before they can be applied on a diverse set of test molecules. The predictive 

ability of QSARs is restricted in their structural and response domain which 

indicates that only those test samples that are structurally similar to the 

training set can be given as input to such trained models. With growing 

awareness about the use of QSARs, more sophisticated algorithms have been 

proposed from time to time. Availability of such state-of-the-art approaches 

has allowed QSAR modellers to overcome several prevailing issues in 

efficient and faster ways. In theory, a QSAR model can be developed based 

on one of the several available model development algorithms, however its 

applicability is always restricted since a limited pool of structural diversity is 

taken into account while developing such predictive models. Thus, 

addressing the AD of such powerful yet restrictive models can be a useful 

way to guide the users and keeping them from making predictions which 

could be unreliable due to extrapolation.  

 

Several classical ways of addressing the AD of QSAR models were 

introduced and an attempt to better explore their features was made 

considering simulated models as well as published models from the 

literature. All of these classical approaches were able to partially overcome 

some of the prevailing issues in defining the model’s AD but simultaneously, 

were associated with several other drawbacks. Whether it comes to 

inefficiency with data complexity or issues in defining an interpolation space 

sufficiently restricting it to reliable predictions, all the approaches had their 

own salient features accompanied by some disappointing drawbacks most of 

the times.  

 

The range-based approaches may be the simplest, however PCA bounding 

box was associated with the most positive impact on model statistics in case 

of CAESAR model A by excluding just two test molecules outside the 

model’s AD. On the other hand, advanced kernel approaches like optimized 
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gaussian kernel considered a giant portion of the test set to be excluded from 

the model’s AD, in some cases without any noticeable impact on the model 

statistics. Thus, being simple or advanced may not restrict the application of 

such approaches.  

 

Two novel approaches were introduced and their underlying algorithms were 

discussed. One of them defined the interpolation space relying heavily on an 

opted k value while the other applied the salient features of Locally-centred 

Mahalanobis distances to identify test samples beyond the scope of a model. 

Both the approaches were quite diverse but their results converged in several 

cases with each other as well as with those derived for other classical 

approaches, indicating the presence of several consensus test samples to be 

excluded from the model’s AD. Both the discussed approaches were quite 

efficient even in higher dimensions, the defined interpolation space was 

reasonably restricted and the excluded test samples in several cases were 

associated with higher absolute standardized errors indicating that the results 

derived in the model’s descriptor space can converge to the observations 

made in the model’s response domain. 

 

There is still a lot to explore within and beyond the scope of this thesis work.  

Development of efficient AD strategies to deal with consensus models could 

be one of them. Such models are interesting since they don’t exist on their 

own and their predictions are completely reliable on the output of several 

other models. In the case of biodegradability models, the resulting error rate 

reduced reasonably implementing consensus models. Usually, with classical 

and new AD approaches dealt in this thesis, the final output simply indicated 

if the test sample is inside or outside the model’s AD. There can be several 

test samples that may be structurally similar but not to a sufficient extent. 

The predictions derived for such test samples may not be completely 

meaningless. So to deal with such issues, in future some approaches could be 

developed quantifying the reliability in predictions rather than simply 

deciding to include or exclude a prediction. It could be also interesting to see 

if combining the AD output from several approaches could help overcoming 

their prevailing drawbacks and allow a better reliability in AD assessment. 
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Abstract: One of the OECD principles for model validation requires defining the 

Applicability Domain (AD) for the QSAR models. This is important since the reliable 

predictions are generally limited to query chemicals structurally similar to the training 

compounds used to build the model. Therefore, characterization of interpolation space is 

significant in defining the AD and in this study some existing descriptor-based approaches 

performing this task are discussed and compared by implementing them on existing 

validated datasets from the literature. Algorithms adopted by different approaches allow 

defining the interpolation space in several ways, while defined thresholds contribute 

significantly to the extrapolations. For each dataset and approach implemented for this 

study, the comparison analysis was carried out by considering the model statistics and 

relative position of test set with respect to the training space. 

Keywords: QSAR; model validation; Applicability Domain; interpolation space 

 

1. Introduction 

The quantitative relationship between chemical structures and their properties can be established 

mathematically by means of QSARs and thus, given that the structural information is available, QSAR 
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models can be used theoretically to predict the properties for those chemicals [1]. Due to increasing 

application of such QSAR models, there had been rising concerns with respect to their predictions [2]. 

Derivation of QSAR models is based primarily on training sets which are structurally limited and thus 

their applicability to the query chemicals is limited. In other words, the model can provide more 

reliable prediction for the external compounds that fall within these structural limitations [3]. 

A new European legislation on chemicals!REACH (Registration, Evaluation, Authorization and 

restriction of Chemicals) came into force in 2007, which deals with risk assessment of chemicals for 

their safe use, thus contributing to the human health and environment [4]. This law allows and 

encourages the use of QSAR model predictions when the experimental data are not sufficiently 

available or as supplementary information, provided validity of the model is justified [5]. Five OECD 

principles for QSAR validation adopted in November 2004 are the requisites of any given model 

proposed for regulatory use and can be significant to demonstrate the validity of QSAR models, which 

is crucial for REACH implementation.  

According to these OECD principles, the QSAR model should have: (1) a defined end point; (2) an 

unambiguous algorithm; (3) a defined domain of applicability; (4) appropriate measures for  

goodness-of-fit, robustness and predictivity and (5) a mechanistic interpretation, if possible [6]. The 

principles, in general, provide user with all the essential information regarding end-point being 

predicted, model algorithm used, scope of the model and associated limitations, model performance 

and understanding of how the model descriptors are associated with predicted endpoint [5]. This paper 

primarily focuses on the third OECD principle that deals with defining the Applicability Domain (AD) 

of a QSAR model. 

The principle of Applicability Domain requires users to define the model limitations with respect to 

its structural domain and response space. As discussed above, the reliable QSAR predictions are 

limited generally to the chemicals that are structurally similar to ones used to build that model [7"9]. 

The query chemicals that satisfy the scope of the model are considered as within the AD and classified 

as interpolated whereas the rest are extrapolations and thus, outside the AD. Reliability in a given 

model is higher for predictions falling within the AD and it is most likely to be unreliable for the 

extrapolations. This implies that the fourth OECD principle dealing with model accuracy is highly 

dependable on the model#s AD since here the chemical space associated with reliable predictions is 

identified. Molecular descriptors used to build the model also play a significant role in defining the 

AD. Thus, if a query chemical differs in terms of the structural limitations defined by the training set,  

it can be considered as an outlier for that chemical space. 

Defining a model#s AD is essential in order to determine the subspace of chemical structures that 

could be predicted reliably. In other words, the degree of generalization of a predictive model depends 

on how broad the domain of applicability is. If the domain is too restricted, this implies the model is 

capable of giving reliable predictions only for limited chemical structures. Also, for regulatory 

purposes, like in REACH, it is essential for the user to provide all possible documentation about the 

model#s AD. This is beneficial for the user to see if the endpoint for the chemical structures under 

evaluation can be reliably predicted. Also, for the cases where several QSAR models are available for 

chemicals of interest, the knowledge of AD can be applied to compare how reliable the predictions 

could be for different models [1]. 
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Characterization of the interpolation space is very significant to define the AD for a given QSAR 

model. Several AD approaches have been already proposed and primarily they all differ in the way 

how they characterize the interpolation space defined by the descriptors used. They can be classified 

into following four major categories based on the methodology used for interpolation space 

characterization in the model descriptor space: Range-based methods, Geometric methods, Distance-

based methods and Probability Density Distribution based methods [1"5]. 

In this study, the above mentioned AD approaches are discussed and compared, focusing on the 

methodology used and criteria followed to consider a query structure to be within (or outside) the 

Applicability Domain. The major goal of this paper is to provide a detailed comparison of the results 

obtained, using these different AD approaches on some selected datasets. Two models from the 

CAESAR project, which predict the bioconcentration factor (BCF), were chosen as the case  

study [10,11]. Apart from their own test sets, an alternative test set from EPI Suite package BCFBAF 

v3.00 was chosen to facilitate further evaluation of AD approaches [12,13]. The number of test 

compounds considered outside AD for different approaches was calculated and the reliability of these 

results was further interpreted by analyzing both, the prediction statistics and the relative position of 

test compounds with respect to the training space. For all distance measures in this study, the pattern of 

test compounds considered outside the AD was understood by implementing the distance-based 

approaches with several threshold defining strategies that considered both, the distances of training 

compounds from their mean as well as the average distances of training compounds from their first 5 

nearest neighbors. Finally, comparing the results derived with this analysis, most preferred thresholds 

for distance-based approaches were chosen for their overall comparison with other AD approaches.  

2. Applicability Domain Methods  

The basis for interpolation is to predict the function value at a given point when the values at 

neighboring points are known. There are several descriptor based approaches by which the interpolation 

regions in multivariate space can be estimated for QSAR models. In a given p-dimensional descriptor 

space, estimations for new query chemicals are then obtained using the training data [1]. All the 

approaches used for this study were implemented using MATLAB [14] and are discussed briefly in 

this section informing their main features to define the interpolation space as well as the thresholds 

criterion used.  

2.1. Range-Based and Geometric Methods 

These are considered as the simplest methods to characterize a model#s interpolation space. 

2.1.1. Bounding Box 

This approach considers the range of individual descriptors used to build the model. Assuming a 

uniform distribution, resulting domain of applicability can be imagined as a Bounding Box which is a 

p-dimensional hyper-rectangle defined on the basis of maximum and minimum values of each 

descriptor used to build the model. The sides of this hyper-rectangle are parallel with respect to the 

coordinate axes. However, there are several drawbacks associated with this approach: since only 
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descriptor ranges are taken into consideration, empty regions in the interpolation space cannot be 

identified and also the correlation between descriptors cannot be taken into account [1,2].  

2.1.2. PCA Bounding Box 

PCA transforms the original data into a new coordinate system by the rotation of axes, such that the 

new axes are orthogonal to each other and aligned in the direction having maximum variance within 

the data. These new axes are called Principal Components (PCs) representing the maximum variance 

within the dataset [15]. A M-dimensional hyper-rectangle (where M is the number of significant 

components) is obtained similar to the previous approach by considering the projection of the 

molecules in the principal component space, however taking into account the maximum and minimum 

values for the PCs. The implementation of Bounding Box with PCA can overcome the problem of 

correlation between descriptors but empty regions within the interpolation space still remains an  

issue [1,2,5]. Moreover, selection of appropriate number of components is significant to implement 

this approach. 

2.1.3. Convex Hull 

With this approach, interpolation space is defined by the smallest convex area containing the entire 

training set. Implementing a Convex Hull can be challenging with increasing data complexity [16]. For 

two or three dimensional data, several algorithms are proposed; however, increase in dimensions 

contribute to order of complexity. In addition, set boundaries are analyzed without considering the 

actual data distribution. Similar to the Range-based approaches, Convex Hull cannot identify the 

potential internal empty regions within the interpolation space [1,2]. 

2.2. Distance-Based Methods 

These approaches calculate the distance of query compounds from a defined point within the 

descriptor space of the training data. The general idea is to compare distances measured between 

defined point and the dataset with a pre-defined threshold. The threshold is a user defined parameter 

and is set to maximize the separation of dense regions within the original data. However, the cut-off 

value does not entirely reflect the actual data density [1"5]. No strict rules were evident from the 

literature about defining thresholds for distance-based approaches and thus it is up to the user how to 

define them. In this study, for all the distance measures, several possible threshold defining strategies 

were considered, the derived results were compared and finally the appropriate thresholds were chosen 

to overall compare their results with the ones derived from Range-based, Geometric and Probability 

Density Distribution based approaches. Some commonly used and most useful distance measures in 

QSAR studies include Mahalanobis, Euclidean and City Block distances [2,5].  

The unique feature associated with Mahalanobis measure is the co-variance matrix which can 

handle the correlated descriptors. The other two distance measures lack this characteristic and thus 

require an additional treatment; for example, PC rotation to correct for the correlated axes. Iso-distance 

contours constitute the regions having constant distance measures and generally their shape differs 
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with approaches according to the distance measure considered, for example, ellipsoids for 

Mahalanobis and spherical in case of Euclidean distances [2].  

Apart from them, similar approaches based on leverage are quite recommended for defining AD of 

a QSAR model [17]. Leverage of a query chemical is proportional to its Mahalanobis distance measure 

from the centroid of the training set. The leverages are calculated for a given dataset X by obtaining 

the leverage matrix (H) with the equation below: 

H = X XTX
-1

XT
 (1) 

where X is the model matrix while X
T
 is its transpose matrix. 

Diagonal values in the H matrix represent the leverage values for different points in a given dataset. 

Compounds far from the centroid will be associated with higher leverage and are considered to be 

influential in model building. Leverage is proportional to Hotellings T
2
 statistic and Mahalanobis 

distance measure but can be applied only on the regression models. The approach can be associated 

with a warning leverage, generally three times the average of the leverage that corresponds to p/n 

where p is the number of model parameters while n is the number of training compounds. A query 

chemical with leverage higher than the warning leverage can be associated with unreliable predictions. 

Such chemicals are outside the descriptor space and thus be considered outside the AD [1,2,5]. In this 

study, the corresponding Mahalanobis measures were used. 

K nearest Neighbors Approach 

This approach is based on providing similarity measure for a new chemical with respect to the 

compounds within the training space. The similarity is accessed by finding the distance of a query 

chemical from nearest training compound or its distances from k nearest neighbors in the training set. 

If these distance values are within the user defined threshold, the query chemical with higher similarity 

is indicated to have higher number of training neighbors and therefore, is considered to be reliably 

predicted. Thus, similarity to the training set molecules is significant for this approach in order to 

associate a query chemical with reliable prediction [9]. 

2.3. Probability Density Distribution-Based Method 

Considered as one of the most advanced approaches for defining AD, these methods are based on 

estimating the Probability Density Function for the given data. This is feasible by both, parametric 

methods that assume standard distribution and non parametric methods which do not have any such 

assumptions concerning the data distribution. A main feature of these approaches is their ability to 

identify the internal empty regions. Moreover, if needed, the actual data distribution can be reflected 

by generating concave regions around the interpolation space borders [1,2].  

Generally these approaches are implemented by estimating probability density of the dataset 

followed by identifying Highest Density Region that consists of a known fraction (given as user input) 

from the total probability mass [1]. 

Potential is created for each molecule in the training set such that it is highest for that molecule and 

decreases with distance. Once the potential is calculated for all the compounds, global potential is 

obtained by adding the individual potentials thus indicating the probability density [18,19].  
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There are several types of potential functions; however, for this study Gaussian function was 

considered. Given two molecules xi and xj, it can be determined as below: 

2
2

1 1

2 2
i j

i j

x ,x exp
s s x x

 (2)  

where i jx ,x  is the potential induced on xj by xi and width of the curve is defined by smoothing 

parameter s. The cut off value associated with Gaussian potential functions, namely fp, can be 

calculated by methods based on sample percentile [18]: 

1qp i j jf f j f f  (3)  

with q p
100

n
, where p is the percentile value of probability density, n is the number of compounds 

in the training set and j is the nearest integer value of q. Test compounds with potential function values 

lower than this threshold are considered outside the AD. 

2.4. Other AD Approaches 

Apart from the AD strategies discussed above, several other approaches were published in literature 

to define the AD of QSAR models, some of which are briefly discussed below. These approaches were 

not considered for this comparative study since the analysis was limited to the classical AD 

methodologies used for interpolation space characterization in the model descriptor space.  

2.4.1. Decision Trees and Decision Forests Approach 

Based on the consensus prediction of Decision Trees (DT), this approach specifies the AD in terms 

of prediction confidence and domain extrapolation. The main idea here is to minimize the overfitting 

which can be achieved by combining the DTs and keeping the differences within different DTs to 

maximum possible. Predictions from all the combined DTs are averaged in order to determine the 

prediction confidence for a given compound while domain extrapolation provides the prediction 

accuracy for that compound outside the training space [1,20,21]. 

2.4.2. Stepwise Approach to Determine Model#s AD 

This approach is divided into four stages applied in a sequential manner. In the first stage, a query 

chemical is checked to fall within the range of variation of the physicochemical properties of training 

set compounds. During the second stage, structural similarity is found within the chemicals that are 

correctly predicted by the model. The third deals with mechanistic check while the reliability of 

simulated metabolism is taken into account in the final stage. To be considered within the AD, a query 

compound is required to satisfy all the conditions specified within these four stages. As a part of this 

rigorous approach, a chemical is evaluated for similarity, metabolic and mechanistic check, thus 

addressing the reliability of predictions and allowing a better assessment of model#s AD [3,5]. 



Molecules 2012, 17 4797 

 

2.5. Models and Test Sets 

This section deals with models and datasets selected for the comparison of the different  

AD approaches.  

2.5.1. CAESAR Models  

Bioconcentration factor, which is one of the most important endpoints for environmental fate of 

chemicals, was chosen for comparing the results derived from the different AD approaches considered 

in this study. As the procedure requires deep knowledge of the model and also information about its 

datasets and building methods, two already existing models to predict BCF were considered [10,11].  

The QSAR models (Model 2 and Model 5) used in this study were the selected best two BCF 

models developed under the EU project CAESAR taking into account the REACH requirements [10]. 

These two models based on Radial Basis Function Neural Network (RBFNN) [22] were rebuilt, each 

with five descriptors that were calculated using Dragon 5.5 [23].The obtained statistics are summarized 

in Table 1. 

Table 1. An overview of selected CAESAR models. 

Model 
Training set Test set 

R
2
 
(a) 

RMSE 
(b)

Q
2
 
(c)

RMSEP 
(d)

1) Model 2 0.804 0.591 0.797 0.600 

2) Model 5 0.810 0.581 0.774 0.634 
(a) Determination coefficient R2; (b) Root-mean-square error RMSE; (c) Predictive squared correlation 

coefficient Q2; (d) Root-mean-square error of prediction RMSEP. 

2.5.2. CAESAR and EPI Suite Test Sets 

The CAESAR dataset consisted of 473 compounds, randomly divided into a training set of 378 

compounds and a test set of 95 compounds, as explained in the original study [10]. The Q
2
 and RMSEP 

values for the test sets of CAESAR Model 2 and Model 5 are reported in Table 1. 

For a better evaluation of AD approaches, in addition to the CAESAR test set, the validation set of 

the BCF model from EPI Suite package BCFBAF was selected as an additional test set
 
[12,13]. This 

test set was comprised of 158 compounds, from which one compound was discarded due to structure 

inadequacy while other 49 compounds were not considered due to overlapping with the CAESAR 

training set compounds.  

3. Results and Discussion 

For the AD approaches discussed earlier, general rules to define thresholds are discussed in the 

literature except for distance-based approaches. Thresholds can be defined in several ways for the 

distance-based approaches, thus resulting in an ambiguity over selection of appropriate thresholds for 

this study. As a result, before an overall comparison of results with different AD approaches could be 

performed, thresholds for distance-based approaches had to be finalized.  
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To decide upon appropriate thresholds for distance-based approaches, several threshold defining 

strategies were implemented for the different distance measures considered in this study. All these 

strategies discussed below required calculating distances of training compounds from their centroid. 

To evaluate further possibilities, the study was extended implementing these strategies however 

considering average distance of each training compound from their first 5 nearest neighbors. Model 

statistics were recorded each time and the most appropriate distance based thresholds were then 

selected from above mentioned results for all distance measures considered in this study. Until this 

point, all the four categories of AD approaches were associated with appropriate thresholds and finally 

subjected to overall comparison of results. 

The results were tabulated informing the model#s statistics for each AD approach on the compounds 

considered inside the applicability domain using the following parameters:  

i) Number of test compounds considered outside the domain of applicability; 

ii) Predictive squared correlation coefficient Q
2
 [24,25]: 
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where i
!y  is the predicted value for the i-th compound and iy  its experimental value; nTR is the number 

of compounds in the training set and nEXT the number in the test set; TRy  is the mean response of the 

training set. Moreover, in order to somehow quantify the role of the compounds considered inside and 

outside AD, RMSEP  was defined by the following equation:  

OUT INRMSEP RMSEP RMSEP
 (5)  

where RMSEPOUT is the root mean square error in prediction for the test compounds outside AD, while 

RMSEPIN is the root mean square error in prediction for the test compounds inside AD. Negative 

values indicate that the compounds detected outside AD are predicted better than the compounds 

inside AD, thus highlighting some possible drawbacks in the definition of interpolation space. On the 

contrary, positive values of RMSEP  indicate a reliable partition for the compounds detected as inside 

and outside AD. 

Multi Dimensional Scaling (MDS) was used to visualize the relative position of test compounds 

with respect to the training space. MDS enables the representation of p-dimensional data by means of a 

2D plot. The implementation allowed a better understanding of how the interpolation space was 

characterized and if the compounds outside the AD were more concentrated around the training set 

extremities or not. 

3.1. Defining Thresholds for Distance-Based AD Approaches 

Initially, the distances of training compounds from their centroid were calculated and from this 

resulting vector, the maximum and average distance value (maxdist and d) were derived. The first 

threshold strategy defined the AD considering maxdist as threshold [2]. The second and third strategies 

considered twice and thrice the values of d as their thresholds, respectively. The fourth strategy 
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performed percentile approach on the above derived vector of distances sorted in ascending order and 

the distance value corresponding to 95 percentile (p95) was chosen as the threshold. Finally, the fifth 

strategy (dsz) considered average distance d as well as the standard deviation from the distance vector 

(std) and the threshold was then defined as d std z , where z is the arbitrary parameter and is set to 

0.5 as default value [26].  

For all the cases, distance of a test compound from the training set centroid is compared with the 

defined threshold. If the distance of this test compound from the training set centroid is less than or 

equal to the threshold value, it is considered inside the AD. Thus, these approaches differ the way in 

which thresholds are derived, however the principle behind considering a given test compound to be 

inside or outside AD remains the same. Results derived with all the four threshold strategies are shown 

in Table 2 for CAESAR Model 2 considering different distance measures. 

Table 2. Statistics for CAESAR Model 2 implementing distance-based approaches with 

different thresholds. For the acronyms maxdist, d, p95, dsz, and RMSEP, refer to text. 

Approach Thresholds 

Compounds outside the AD Q
2
 RMSEP 

CAESAR 

out of 95 (%) 

EPI Suite 

out of 108 (%) 
CAESAR 

EPI 

Suite 
CAESAR 

EPI 

Suite 

Euclidean (maxdist) 0.942 0 (0.0) 4 (3.7) 0.797 0.703 - 1.436 

Euclidean (3*d) 1.018 0 (0.0) 1 (0.9) 0.797 0.676 - 0 

Euclidean (2*d) 0.679 7 (7.4) 12 (11.1) 0.802 0.718 0.146 0.753 

Euclidean (p95)  0.663 7 (7.4) 12 (11.1) 0.802 0.718 0.146 0.753 

Euclidean (dsz) 0.423 15 (15.8) 36 (33.3) 0.791 0.741 0.064 0.381 

CityBlock 

(maxdist) 
1.472 0 (0.0) 1 (0.9) 0.797 0.676 - 2.713 

CityBlock (3*d) 1.863 0 (0.0) 0 (0.0) 0.797 0.616 - - 

CityBlock (2*d) 1.242 3 (3.1) 6 (5.5) 0.804 0.699 0.267 1.049 

CityBlock (p95)  1.084 8 (8.4) 11 (10.1) 0.801 0.705 0.068 0.717 

CityBlock (dsz) 0.748 18 (18.9) 38 (35.1) 0.786 0.739 0.093 0.361 

Mahalanobis 

(maxdist) 
6.614 0 (0.0) 0 (0.0) 0.797 0.616 - - 

Mahalanobis (3*d) 6.027 0 (0.0) 0 (0.0) 0.797 0.616 - - 

Mahalanobis (2*d) 4.018 6 (6.3) 5 (4.6) 0.791 0.624 0.174 0.162 

Mahalanobis (p95)  4.034 6 (6.3) 5 (4.6) 0.791 0.624 0.174 0.162 

Mahalanobis (dsz) 2.497 21 (22.1) 27 (25.0) 0.778 0.706 0.138 0.354 

No test compounds emerged outside the AD with first two strategies considering CAESAR test set, 

due to the higher threshold values; however, comparing the model statistics with the other approaches, 

this probably implies some possible drawbacks of these strategies in defining the interpolation space. 

Comparable results were derived considering the third and fourth strategies which imply the thresholds 

corresponding to twice the value of d and that corresponding to 95 percentile converged significantly 

for both the test sets. Model statistics improved in most of the cases, thus reflecting a reasonable 

choice of compounds outside AD. The final strategy taking into account also the standard deviation 

provided the maximum number of test compounds outside the AD, however with no (or significant) 

improvement to the model statistics for both the test sets. A similar pattern was observed for 
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compounds considered outside the AD with both the test sets, however, with respect to the number of 

compounds considered outside the AD with different threshold strategies, the values were 

comparatively higher with EPI Suite test set. This reflected how diverse both the test sets were in terms 

of their compounds and indicating that the CAESAR test set comprised of compounds more similar to 

the training data as compared to the other test set. None of the strategies performed well with 

Mahalanobis distance measure for CAESAR test set resulting in a negative RMSEP. Similar pattern 

for compounds outside AD was observed for CAESAR model 5 and the corresponding results can be 

found in Table 3. 

Table 3. Statistics for CAESAR Model 5 implementing distance-based approaches with 

different thresholds. Maxdist: Maximum distance between training compounds and 

centroid of the training set; d: Average distance of training compounds from their mean; 

RMSEP: Difference between RMSEP for compounds outside and inside the AD. 

Approach Thresholds 

Compounds outside the AD Q
2
 RMSEP 

CAESAR 

out of 95 (%) 

EPI Suite 

out of 108 (%) 
CAESAR 

EPI 

Suite 
CAESAR 

EPI 

Suite 

Euclidean (maxdist) 0.942 0 (0.0) 2 (1.8) 0.774 0.647 - 0.598 

Euclidean (3*d) 0.958 0 (0.0) 2 (1.8) 0.774 0.647 - 0.598 

Euclidean (2* d) 0.639 3 (3.1)  9 (8.3) 0.783 0.665 0.329 0.354 

Euclidean (p95)  0.614 4 (4.2) 11 (10.1) 0.783 0.673 0.266 0.367 

Euclidean (dsz) 0.393 23 (24.2) 32 (29.6) 0.753 0.646 0.128 0.044 

CityBlock 

(maxdist) 
1.472 0 (0.0) 2 (1.8) 0.774 0.647 - 0.598 

CityBlock (3*d) 1.791 0 (0.0) 1 (0.9) 0.774 0.634 - 0.037 

CityBlock (2*d) 1.194 1 (1.0) 5 (4.6) 0.772 0.657 0.417 0.457 

CityBlock (p95)  1.085 4 (4.2) 11 (10.1) 0.767 0.665 0.309 0.308 

CityBlock (dsz) 0.723 21 (22.1) 32 (29.6) 0.751 0.639 0.156 0.022 

Mahalanobis 

(maxdist) 
6.957 0 (0.0) 0 (0.0) 0.774 0.633 - - 

Mahalanobis (3*d) 6.121 0 (0.0) 0 (0.0) 0.774 0.633 - - 

Mahalanobis (2*d) 4.081 3 (3.1) 6 (5.5) 0.767 0.621 0.445 0.275 

Mahalanobis (p95)  3.859 5 (5.2) 6 (5.5) 0.764 0.621 0.327 0.275 

Mahalanobis (dsz) 2.495 23 (24.2) 18 (16.6) 0.760 0.637 0.081 0.035 

The study was further extended by implementing the above mentioned threshold strategies for each 

distance measure, but considering average distance of each training compound from its first 5 nearest 

neighbors. Given a n by n distance matrix where n is total number of training compounds, in all the 

cases, average distance of each training sample from its first five nearest training neighbors is found. 

Later, the gross average is derived from these average distance values which will be denoted 

henceforth as D. In the first and second case, twice and thrice the value of D is considered as threshold, 

respectively. For the third case, percentile approach discussed earlier in potential density distribution 

methods, is applied on the sorted average distances of all training compounds (used to calculate D) and 

the value corresponding to 95 percentile (p95) is considered as threshold [27]. For the last strategy 

(DSZ), besides calculating the gross average distance D from the first five nearest neighbors, also the 
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standard deviation (Std) is calculated on the average distances. Finally, the threshold is defined as 

D Std z , where z is the arbitrary parameter and is set to 0.5 as default value [26]. For all the cases, 

average distance of a test compound from its first five nearest neighbors in the training set is compared 

with the defined threshold. If the average distance for this test compound is less than or equal to the 

threshold value, it is considered inside the AD. 

Results derived with all the four threshold strategies are shown in Tables 4 and 5 for CAESAR 

Model 2 and Model 5, respectively, considering different distance measures.  

Table 4. Statistics for CAESAR Model 2 implementing different 5NN based threshold 

strategies. For the acronyms D, p95, DSZ, and RMSEP, refer to text. 

Approach Thresholds 

Compounds outside the AD Q
2
 RMSEP 

CAESAR 

out of 95(%)

EPI Suite 

out of 108(%)  
CAESAR 

EPI 

Suite 
CAESAR 

EPI 

Suite 

Euclidean (3*D) 1.522 2 (2.1) 1 (0.9) 0.804 0.676 0.394 2.713 

Euclidean (2* D) 1.015 9 (9.5) 16 (14.8) 0.795 0.750 0.037 0.765 

Euclidean (p95)  1.164 8 (8.4) 13 (12.0) 0.797 0.745 0.859 1.342 

Euclidean (DSZ) 0.693 14 (14.7) 31 (28.7) 0.787 0.767 0.113 0.517 

CityBlock (3*D) 2.371 4 (4.2) 5 (4.6) 0.803 0.679 0.187 0.968 

CityBlock (2*D) 1.581 10 (10.5) 18 (16.7) 0.794 0.742 0.042 0.664 

CityBlock (p95)  1.918 7 (7.4) 11 (10.2) 0.799 0.741 0.034 0.944 

CityBlock (DSZ) 1.083 16 (16.8) 27 (25.0) 0.801 0.731 0.037 0.446 

Mahalanobis (3*D) 1.718 3 (3.2) 4 (3.7) 0.803 0.628 0.221 0.295 

Mahalanobis (2*D) 1.145 9 (9.5) 18 (16.7) 0.794 0.748 0.045 0.691 

Mahalanobis (p95)  1.388 6 (6.3) 11 (10.2) 0.801 0.735 0.908 1.183 

Mahalanobis (DSZ) 0.786 19 (20.0) 29 (26.9) 0.795 0.745 0.019 0.470 

Table 5. Statistics for CAESAR Model 5 implementing different 5NN based threshold 

strategies. D: The gross average distance of training set compounds from their 5NN; 

RMSEP: Difference between RMSEP for compounds outside and inside the AD. 

Approach Thresholds 

Compounds outside the AD Q
2
 RMSEP 

CAESAR 

out of 95 (%) 

EPI Suite 

out of 108 (%)  
CAESAR 

EPI 

Suite 
CAESAR

EPI 

Suite 

Euclidean (3*D) 1.681 0 (0.0) 2 (2.8) 0.774 0.644 - 0.364 

Euclidean (2* D) 1.121 7 (7.4) 13 (12.0) 0.781 0.690 0.130 0.437 

Euclidean (p95)  1.331 1 (1.0) 7 (6.5) 0.772 0.656 0.331 0.126 

Euclidean (DSZ) 0.782 18 (18.9) 22 (20.4) 0.784 0.743 0.072 0.512 

CityBlock (3*D) 2.684 1 (1.1) 5 (4.6) 0.772 0.648 0.456 0.307 

CityBlock (2*D) 1.789 9 (9.5) 12 (11.1) 0.788 0.690 0.190 0.462 

CityBlock (p95)  2.302 2 (2.1) 8 (7.4) 0.785 0.657 0.529 0.310 

CityBlock (DSZ) 1.232 19 (20.0) 30 (27.8) 0.782 0.753 0.055 0.433 

Mahalanobis (3*D) 2.006 0 (0.0) 4 (3.7) 0.774 0.624 0.326 0.149 

Mahalanobis (2*D) 1.337 6 (6.3) 10 (9.3) 0.779 0.683 0.115 0.482 

Mahalanobis (p95)  1.668 2 (2.1) 6 (5.6) 0.771 0.631 0.193 0.043 

Mahalanobis (DSZ) 0.933 21 (22.1) 24 (22.2) 0.792 0.713 0.110 0.356 
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As obvious from Table 4, lowest number of test compounds were considered outside AD with the 

strategy considering 3*D as threshold. When the thresholds were lowered to 2*D, several other test 

compounds were considered outside the AD, however, the model performed worse with CAESAR test 

set. Same pattern was observed considering EPI Suite test set however, without lowering the model 

statistics and the number of test compounds outside the AD were comparatively higher in this case. 

Strategy taking into account also the standard deviation, was associated with the lowest threshold value 

thus, restricting the AD. Large number of compounds were considered outside the AD without 

improving the model statistics. The percentile approach considered reasonable number of test 

compounds outside AD without any major impact on the model statistics and the results were 

comparatively better with EPI Suite test set. Similar results and considerations were derived with 

CAESAR model 5.  

The next and the final step was to finalize upon one threshold strategy for distance-based 

approaches. All the four above mentioned strategies behaved differently depending on the distance 

measure considered. A strategy that improved the model statistics for one distance measure couldn#t 

have similar impact for another distance measure. This observation couldn#t allow an easy 

interpretation towards finalizing upon one strategy. However, considering improved model statistics 

with reasonable number of test compounds considered outside the AD, the percentile approach was a 

preferred choice. Moreover, when the methodologies for different AD methods were described earlier, 

Probability Density Distribution method reflected the statistical significance of defining percentiles. 

These considerations concluded finalizing upon the percentile approach for overall comparison of the 

results. This approach was implemented initially considering the distance of training compounds from 

their centroid (p95) and in the later case, based on average distance of training compounds from their 5 

nearest neighbors (p95). Both the considerations were different in defining the interpolation space and 

thus, resulted in different number of compounds outside the AD with the same distance measure. 

Information derived in both the cases was significant and thus was retained for the overall comparison 

of the results. 

3.2. Overall Comparisons 

The distance-based approaches were then compared with other previously discussed AD 

approaches, considering the both CAESAR (95 compounds) and EPI suite (108 compounds) test sets. 

The results are summarized in Tables 6 and 7 for CAESAR Model 2 and Model 5, respectively. 

As shown in Table 6, by performing PCA analysis along with Bounding Box approach on Model 2, 

two test compounds were considered outside the AD. Convex Hull and Probability Density approach 

led to maximum number of test compounds outside the AD, thus decreasing the generalization ability 

of the models. p95 approach lowered the model statistics for Mahalanobis distance measure. Q
2
 

slightly lowered for Convex Hull that considered several test compounds outside the AD. On the other 

hand, model statistics improved for Probability Density Distribution approach which was associated 

with the maximum number of test compounds outside the AD (42.6%). As a general remark, the model 

statistics improved for several approaches with increase in number of test compounds considered 

outside the AD. Since the CAESAR test set comprised compounds more similar to the training set, not 

many test compounds emerged outside the AD; however, the EPI suite test set is comparatively 
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different from the training data and thus considerably more compounds were outside the AD by 

different approaches. RMSEP remained positive considering most of the AD approaches. Similar 

pattern for compounds outside the AD was derived for CAESAR model 5 and the corresponding 

results are reported in Table 7. 

Table 6. Statistics for CAESAR Model 2 applied to CAESAR and EPI Suite test sets for 

different AD approaches. 

Approach 

Compounds outside the AD Q
2
 RMSEP 

CAESAR 

out of 95 (%) 

EPI Suite 

out of 108 (%) 
CAESAR 

EPI 

Suite 
CAESAR 

EPI 

Suite 

Euclidean Dist. (p95) 7 (7.4) 12 (11.1) 0.802 0.718 0.146 0.753 

City Block Dist. (p95) 8 (8.4) 11 (10.1) 0.801 0.705 0.068 0.717 

Mahalanobis Dist. (p95) 6 (6.3) 5 (4.6) 0.791 0.624 0.174 0.162 

5NN-Euclidean Dist. (p95)  8 (8.4) 13 (12.0) 0.797 0.745 0.859 1.342 

5NN-CityBlock Dist. (p95)  7 (7.4) 11 (10.2) 0.799 0.741 0.034 0.944 

5NN-Mahalanobis Dist. (p95) 6 (6.3) 11 (10.2) 0.801 0.735 0.908 1.183 

Bounding Box 0 (0.0) 2 (1.8) 0.797 0.678 - 1.798 

PCA Bounding Box 2 (2.1) 3 (2.8) 0.804 0.688 0.371 1.533 

Convex Hull 22 (23.2) 31 (28.7) 0.789 0.721 0.052 0.368 

Potential Function 29 (30.5) 46 (42.6) 0.831 0.766 0.156 0.374 

Table 7. Statistics for CAESAR Model 5 applied to CAESAR and EPI Suite test sets for 

different AD approaches. 

Approach 

Compounds outside the AD Q
2
 RMSEP 

CAESAR 

out of 95 (%) 

EPI Suite 

out of 108 (%) 
CAESAR 

EPI 

Suite 
CAESAR 

EPI 

Suite 

Euclidean Dist. (p95) 4 (4.2) 11 (10.1) 0.783 0.673 0.266 0.367 

City Block Dist. (p95) 4 (4.2) 11 (10.1) 0.767 0.665 0.309 0.308 

Mahalanobis Dist. (p95) 5 (5.2) 6 (5.5) 0.764 0.621 0.327 0.275 

5NN-Euclidean Dist. (p95)  1 (1.0) 7 (6.5) 0.772 0.656 0.331 0.126 

5NN-CityBlock Dist. (p95)  2 (2.1) 8 (7.4) 0.785 0.657 0.529 0.310 

5NN-Mahalanobis Dist. (p95) 2 (2.1) 6 (5.6) 0.771 0.631 0.193 0.043 

Bounding Box 0 (0.0) 1 (0.9) 0.774 0.634 - 0.037 

PCA Bounding Box 0 (0.0) 2 (1.8) 0.774 0.634 - 0.021 

Convex Hull 16 (16.8) 21 (19.4) 0.780 0.643 0.049 0.051 

Potential Function 28 (29.5) 47 (43.5) 0.787 0.813 0.062 0.455 

To visualize where test set compounds were located with respect to the training compounds, 

multidimensional scaling (MDS) was performed. This enabled the representation of 5 dimensional data 

(the molecular descriptors defining the CAESAR models) by means of a two dimensional plot. 

From the MDS plots in Figure 1, it is clear that several test compounds that were localized towards 

the extremities of training set were considered outside the AD with most of the approaches. For 

example, CAESAR test compound 33 and EPI Suite test compound 60 were considered outside on the 

basis of 7 and 9 AD approaches, respectively. However, there were several compounds that were quite 

close to the training space but still falling outside the AD, especially with Convex Hull and Probability 

Density approaches (for example, CAESAR test compound 38 and EPI Suite test compound 33). Since 
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the internal empty regions within chemical space cannot be easily detected and correlation between 

descriptors cannot be explained with Bounding Box, this approach failed to consider any test 

compound outside the AD. When the same approach was implemented on this dataset after PCA 

analysis, the correlation between descriptors was taken into account and as a result, two compounds 

from the test set were considered outside the AD. With respect to the EPI Suite test set, the MDS plots 

showed how most of test compounds outside the AD were lying in the training set extremities and 

were almost the same for different AD approaches. Those compounds were further more distant from 

training set than in the CAESAR test set. Similar results were derived for CAESAR model 5 and the 

corresponding plots are shown in Figure 2. 

Figure 1. CAESAR test set (a) and Epi Suite test set (b) projected in the training space of 

Model 2. Training set (+); test set ( ); compounds outside the AD with different 

approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and PCA Bound. 

Box ( ), Conv. Hull ( ), Pot. Funct. ( ). 

 

 

(a) 

(b) 
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Figure 2. CAESAR test set (a) and Epi Suite test set (b) projected in the training space of 

Model 5. Training set (+); test set ( ); compounds outside the AD with different 

approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and PCA Bound. 

Box ( ), Conv. Hull ( ), Pot. Funct. ( ).  

 

 

It was observed for both the CAESAR models that some compounds very close to the training 

compounds were considered outside the AD while others lying further were considered inside it. This 

could be explained by the fact that most of the implemented approaches considered only interpolation 

by simply excluding all test compounds in the extremities and including all those surrounded by 

training set compounds even if they are situated within empty regions of the chemical space. 

Figure 3 provides the calculated logBCF values from the CAESAR Model 2 plotted against the 

experimental log BCF values (Exp logBCF). It can be noted that several test compounds not so reliably 

predicted were considered outside the AD. On the other hand, well predicted test compounds like 34 in 

(a) 

(b) 
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CAESAR test set and 59 in EPI Suite test set were considered outside by 2 and 5 AD approaches 

respectively. This indicates that the strategy used by different AD approaches might have considered 

some well predicted compounds outside the AD, thus affecting the model statistics. As seen earlier in 

Tables 6 and 7, Convex Hull and Probability Density Distribution approaches had considerable 

number of test compounds outside the AD; however, both the approaches differed significantly with 

respect to the model statistics. The results corresponding to CAESAR model 5 are plotted in Figure 4. 

Figure 3. Predicted Vs observed log BCF values for CAESAR test set (a) and Epi Suite 

test set (b) with Model 2. Training set (+); test set ( ); compounds outside the AD with 

different approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and 

PCA Bound. Box ( ), Conv. Hull ( ), Pot. Funct. ( ). 

 

 

(a) 

(b) 
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Figure 4. Predicted Vs observed log BCF values for CAESAR test set (a) and Epi Suite 

test set (b) with Model 5. Training set (+); test set ( ); compounds outside the AD with 

different approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and 

PCA Bound. Box ( ), Conv. Hull ( ), Pot. Funct. ( ). 

 

 

The plots indicate that several test compounds unreliably predicted were localized on the 

extremities of the training space and considered outside the AD while several well predicted test 

compounds were also considered outside with different approaches. This observation holds true for 

both the test sets however, the number of test compounds considered outside the AD were 

considerably higher for EPI Suite test set. Figure 3b shows that the three compounds 56, 57 and 60 

considered outside the AD by several approaches were underestimated, and thus the model statistics 

highly improved with AD approaches not considering them within the domain of applicability.  

(a) 

(b) 
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4. Conclusions  

The characterization of interpolation space varied depending on the Applicability Domain approach 

implemented. Approaches compared in this study suffered from several limitations, some concerning 

the complexity of algorithm while some related to the algorithm used for defining interpolation space. 

Addition of PCA did not contribute significantly to the Bounding Box approach with the first test set 

however, with respect to the second validation set, performing PCA analysis had a significant impact 

on improving the model statistics. Probability Density Distribution approach and Convex Hull were 

associated with the highest number of test compounds outside the AD and thus allowing only a limited 

use of the models. Distance-based approaches considered reasonable number of test compounds 

outside the AD, however model statistics lowered for some distance measures. As expected, most of 

the test compounds considered outside the AD with most of the approaches were concentrated towards 

the training set extremities. It was clearly evident from the MDS plots that the distance from training 

space was significant in defining the model#s AD. Also, several test compounds badly predicted by the 

model were considered as outside the AD with most of the approaches. The results from the alternative 

test set provided were similar; however, number of test compounds outside the AD increased. When 

various thresholds were subjected to distance-based approaches, it was noted, however with some 

exceptions, that increase in the number of test compounds outside AD also improved the model#s 

statistics. Finally, all the implemented AD approaches had their own strengths and limitations and thus, 

it is up to the model builder to choose most appropriate applicability domain approach for his model. 

For instance, in this study, one of the aspects considered to evaluate a given AD approach was the 

number of test compounds outside the AD and its resulting impact on the model performance. It is 

important to note that the results derived with different AD approaches may vary for the same dataset 

and none of these approaches can be considered sufficient enough to be applied to all the cases; 

therefore, considering the present state of the art, it would be preferable to evaluate the results from all 

possible strategies before assessing a new compound set.  
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a  b  s  t  r a c t

Outlier detection  is a  prerequisite  to  identify the  presence  of  aberrant samples  in  a  given set of  data.

The identification of  such  diverse data  samples  is significant  particularly  for multivariate  data  analysis

where increasing  data dimensionality  can  easily  hinder  the data  exploration  and  such outliers  often  go

undetected.  This  paper is aimed to introduce  a  novel Mahalanobis  distance  measure  (namely,  a  pseudo

distance)  termed as locally  centred Mahalanobis  distance,  derived by  centering  the covariance  matrix  at

each  data  sample  rather than at  the  data  centroid as in  the  classical  covariance  matrix. Two parameters,

called  as Remoteness and  Isolation  degree, were  derived from the resulting pairwise distance  matrix and

their salient  features  facilitated  a  better  identification  of  atypical samples  isolated  from the rest of the  data,

thus reflecting their potential application towards  outlier  detection.  The Isolation  degree demonstrated

to be able  to detect a  new kind of  outliers,  that  is, isolated samples  within  the data  domain,  thus  resulting

in a  useful  diagnostic  tool  to evaluate  the  reliability  of predictions  obtained  by  local  models  (e.g. kNN

models).

To better understand  the  role  of  Remoteness and  Isolation  degree  in  identification  of such aberrant  data

samples,  some simulated and published data  sets from literature were  considered  as case  studies and

the  results  were compared  with  those  obtained  by  using  Euclidean  distance and classical Mahalanobis

distance.

© 2013 Elsevier B.V. All rights reserved.

∗ Corresponding author. Tel.:  +39  0264482820.

Email address: roberto.todeschini@unimib.it (R.  Todeschini).

1.  Introduction

Outlier detection has been considered quite significant in iden

tifying atypical observations from a  given set of data [1]. In  past

00032670/$ – see  front matter ©  2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.aca.2013.04.034



Please cite this article in press as: R. Todeschini, et  al., Locally centred Mahalanobis distance: A new  distance measure with salient features

towards  outlier detection, Anal. Chim. Acta (2013), http://dx.doi.org/10.1016/j.aca.2013.04.034

ARTICLE IN PRESS
G Model

ACA232536; No. of Pages 9

2 R. Todeschini et  al. /  Analytica Chimica Acta xxx (2013) xxx– xxx

years, several research communities addressed the detection of

outliers with different terminologies, for  instance, novelty detec

tion, anomaly detection, noise detection and exception mining [2].

Usually, outliers deviate markedly from  other data samples and can

highly influence the predictive accuracy of  several commonly used

data mining algorithms [3,4]. In simple terms, outliers represent the

observations that fail to follow the general pattern of the majority

of  data samples [5]. Thus, it  is critical to  detect and appropriately

treat such anomalous observations, contributing to  undesired per

formance degradation, or, alternatively, suggesting unexpected but

interesting patterns.

In recent years, there had been a growing attention towards

dealing with outliers since they can highly impact the variance

and correlation between variables [1]. Increasing dimensionality of

data adds to the complexity of detecting such outliers. Depending

upon the research community performing outlier detection, aber

rant observations can be  either treated as noise and are usually

discarded to obtain clean data, however, in other cases such outliers

can  themselves be a source of interest. For instance, the observa

tions that are not well classified with a classification algorithm can

be discarded to improve the accuracy of the classifier, while on the

other hand, anomalous data samples can be quite informative about

mineral deposits while performing geochemical exploration [4,6].

Several supervised and unsupervisedlearning methods have

been proposed to address outlier mining [4]. Unsupervised learn

ing  approaches do not require any  prior knowledge about the data,

thus processing it as static distribution and considering the remote

samples as potential outliers [3].  On the other hand, supervised

learning algorithms require the prelabelled data, classified as  nor

mal or abnormal [3]. Most of the proposed techniques to  deal  with

outliers were either diagnostic or robust approaches. Diagnostic

approaches identify outliers by fitting the data with classical Least

Squares methods and constructing regression diagnostics. On the

other hand, robust approaches construct estimators that do  justice

to  the majority of the data and the outliers are identified examining

the residuals from this fit [7,8].

Several classical techniques performed well, provided the

given set of data contained only a  single outlier, however, their

inefficiency emerged while  dealing with multiple outliers [9]. Lack

ing  visual perception for data with more  than two dimensions,

restricted the reliable use of such classical approaches only for

twodimensional data [5]. Moreover, masking and swamping con

siderably restricted the usefulness of such classical approaches

towards detection of multiple outliers in  calibration [7,8]. Many

times the presence of some outliers can somehow mask the detec

tion of other outliers. As a result, some outliers are wrongly

identified as normal samples. This phenomenon is referred to  as

masking. On the contrary, swamping refers to  the cases where

the presence of a subset of observations makes normal samples

being incorrectly identified as  potential outliers. Several new and

improved detection approaches emerged from  time to time and

were attempting to overcome major limitations of classical out

lier  detection techniques, however, this domain of data exploration

perhaps may  always leave a room for further improvement towards

developing an approach that can tackle the increasing data com

plexity without comprising upon the quality of detection accuracy.

In this paper, a new distance measure, called locally centred

Mahalanobis distance, based on the covariance matrix centred on

each dataset object, is  introduced and  its salient properties are

discussed. Two new parameters derived from the resulting pair

wise distance matrix are  introduced, in order  to better explore the

isolation of the data samples in their local and global space. The

information corresponding to these new parameters when plotted

can  allow the analyst to  better explore several interesting features

of the data, particularly, in terms of detecting those samples that are

quite diverse from the major pattern followed by the data samples.

The performance of this new distance measure for outlier detection

is evaluated and better explained taking into account the results

derived on  simulated and benchmarked data sets.

2.  Theory

Let the data matrix X  be comprised of n objects and p vari

ables, defined as: X = (xT
1
, xT

2
, . .  . , xT

n)
T
,  where xi are  column vectors

representing the n observations (i =  1, 2,.  . .,  n).

The data are assumed to  be independently sampled from a

multivariate normal distribution Np(m, 6). A general measure of

squared distance from an  observation xi to the centroid of the p

dimensional space m,  for  i = 1,. . .,  n, can thus be written as  follows:

d2
i = (xi − m)T

· M · (xi −  m)  (1)

where M  is a p  × p  symmetrical matrix. It  can be easily noted that

formula (1) is a squared Euclidean distance if M  = I, where I  is the

identity matrix, and a weighted Euclidean distance if M =  W, where

W is a symmetric weight matrix. Moreover, if M = 6−1 where 6

is the population covariance matrix, the squared Mahalanobis dis

tance is obtained as:

d2
i = (xi − m)T

· 6
−1

· (xi − m) (2)

These distances are  distributed according to �2
p and  if the param

eters m and 6 are estimated by  the arithmetic mean x̄ and

the sample covariance matrix S = 1/(n − 1) ·
∑n

i=1
(xi − x̄)(xi − x̄)T

respectively, the (estimated) squared Mahalanobis distances are:

MD2
i = (xi − x̄)T

· S−1
· (xi − x̄) (3)

The distribution is given by  ((n − 1)2/n)MD2
i
∼Beta(p/2,  n − p −

1/2), (e.g., see Ref.  [10]). If S and xi are  independent, then ((n −

p)/(n − 1)p)MD2
i
∼Fp,n−p.

Now, if a  vector v  ∈ Rp is  selected in  the pdimensional space, the

covariance matrix, centred at  v, denoted by S(v), can be calculated

as:

S(v) =
1

n − 1
·

n
∑

i=1

(xi − v)(xi − v)T (4)

Then, it can be  easily verified that,

S(v) = S +
n

n − 1
· (x̄ − v)  (x̄ − v)

T (5)

Finally, the squared Mahalanobis distances considering v as  the

space centre  can be  derived as:

MD2(i, v) = (xi − v)T
· S−1

(v)
· (xi − v) ,  = 1, . .  .  , n (6)

If the above mentioned vector v is now replaced by  an observa

tion xj, for  j = 1,.  .  ., n, the new locally centred squared Mahalanobis

distance between observations i  and j is defined as:

MD2
L (i, j) = (xi − xj)

T
· S−1

(j)
·  (xi − xj)  (7)

where S(j) is the covariance matrix centred on  the jth observation.

It should be noted that the classical covariance matrix S, being

centred on the arithmetic mean vector, minimizes the data  vari

ance, while, the new defined locally centred covariance matrix

encodes different information, data variance depending on  the

selected centre. Thus, the new distance measure is  more informa

tive than the classical Mahalanobis distance, which considers only

the arithmetic mean as  the data centre.

In order to obtain distances that are independent of  the number

of variables p, the distance values can be divided by p, thus obtaining
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locally centred average squared Mahalanobis distances:

MD
2

L (i, j)  =
MD2

L (i,  j)

p

=
1

p
·  [(xi − xj)

T
· S−1

(j)
· (xi − xj)], i, j  = 1,  . .  .  , n (8)

Hereinafter these average distances will be used in all the con

sidered case studies but, for the sake of simplicity, they will be

often shortly referred to as locally centred Mahalanobis distances,

still using the symbol MD2
L .

2.1. Approximating the  distribution of locally centred

Mahalanobis distances

Generally, an Fdistribution (or Hotelling’s T2 distribution) is

obtained by a statistic dTM−1d, where the pdimensional vector

d is normal, the p x p matrix M is a  Wishart matrix, and d and  M

are independent. S can be expressed by  a  quadratic form XTH−1X

with a matrix H, however, M =  S(v) is not a Wishart matrix, since it

cannot be expressed in this form.

In spite of the above considerations, the distribution of distances

MD2
L (v) was approximated by  a �2

p and Betadistribution for  an

illustration with 5dimensional normally distributed data of  100

samples and the results are  shown in  Fig. 1.

The approximation seems to  work quite well with �2
p distribu

tion. Betadistribution can also be used, however, it does not seem

to really improve the approximation.

2.2. Salient features of  the novel distance measure

There are two  important key aspects related to  this novel  dis

tance. Like the distances derived using the classical covariance

matrix, the locally centred Mahalanobis distances are invariant

to any sort of variable scaling. Secondly, unlike the classical

Mahalanobis distance, the resulting objectcentred distance is

asymmetric and consequently is a pseudodistance; indeed, the

distance between two  observations i  and j depends on whether

the selected centre is i  or j:

MD2
L (i, j) /= MD2

L (j, i) (9)

This asymmetry is accounted due to the presence of  all other

observations and their resulting overall influence in deriving the

distances, thus reflecting the significance of  information retrieved

from the locally centred covariance matrix.

The asymmetry between MD2
L (i, j) and MD2

L (j,  i) seems to have

a significant meaning. In fact,  a higher value of MD2
L (i, j) in contrast

with a corresponding lower value for  MD2
L (j, i) indicates that the

object i belongs to a  relatively denser region with respect to  the

object j, which appears to  be more isolated. This consideration can

be further supported by  the fact that, when j is isolated being the

centred object, it shows a higher variance than the case when i is the

centred object, which unlike the earlier, is surrounded by several

objects in its vicinity. As seen from the way these locally centred

Mahalanobis distances are  derived, the variance is calculated as the

reciprocal in the distance formula and as  a result, j tends to  seem

closer to i, while on the contrary, object i with a lower variance

tends to seem comparatively further distant from j. Usually, the

objects with lower variance can be thought of being either located

in a cluster or surrounded by  several similar objects in their vicinity.

The variable space based on  Mahalanobis distances calculated

using the classical covariance matrix is estimated by an ellipsoid (or

hyperellipsoid), while in the case of  locally centred Mahanalobis

distances, the variable space is defined by a family of ellipsoids (or

hyperellipsoids) due to the multicentred approach. Thus, a more

datadriven shaped variable space  is determined using this novel

distance measure.

2.3. Remoteness and isolation degree

It is quite easy  to interpret the significance of columns and rows

in the pairwise distance matrix MD2
L resulting from the novel aver

age locally centred squared Mahalanobis distances. In  fact, each

jth column constitutes the data centre and represents how that

jth object “globally perceives” each ith  object, also taking into

account the overall influence of all the other objects, while each

ith row represents how that ith  object is “globally perceived” by

all the other objects.

Each jth column of the MD2
L matrix contains information about

the distances of  all other i  objects from  the jth centre. The mini

mum value of  a jth column can be taken into account to represent

the squared distance of the jth object from  its nearest neighbour;

this is termed as Isolation degree (Idg):

Idgj = mini([MD2
L ]ij)  i  /= j (10)

Similarly, each ith row  of the MD2
L matrix contains information

about the squared distances of the ith object as  it is perceived from

all the other objects. Thus, the average squared distance value for

each ith row  is taken into account and termed as  Remoteness (Rem):

Remi =

∑n

j=1
[MD2

L ]ij

n  − 1
(11)

The values of remoteness can range from a minimum greater  than

zero and a maximum equal to (n1)/p, while isolation degree for any

given sample remains localized between 0 and 1 (see Appendix). It

should be  also noted that
∑n

i=1
Remi

n
=

∑n

i=1

∑n

j=1
[MD2

L ]ij

n · (n  − 1)
=  1 (12)

i.e.,  the average value of the remoteness vector or, in  other words,

the average value of the matrix MD2
L elements is equal to  one.  Then,

the remoteness could be interpreted as the influence that each sam

ple exerts over the covariance structure of the data, i.e. the values

significantly larger than one identify the most influent samples.

The remoteness highlights objects which are  far  from the bulk

of the remaining objects, i.e. they can be  considered as classical

outliers in the selected variable space; the Isolation degree detects

a different kind of “anomalous” objects, i.e. those objects that,

although located within the variable space, are isolated from  the

other ones or, in other words, these objects are surrounded by

objects not so near. Therefore, a scatter plot of Remoteness vs. Iso

lation degree, called RI  plot, for the data set in analyis can be a useful

tool for exploratory purposes.

The thresholds to  detect remote and  isolated samples, for  the

two distributions of remoteness and isolation degree, are  defined

as the upper “fences” in the box & whisker plots:

threshold = Q3 + 1.5 · (Q3 − Q1) (13)

where Q1 and Q3 are the first and third quartiles, respectively, and

their difference is the interquartile range.

3.  Data sets

To better evaluate the role of remoteness and  isolation degree

towards potential outlier detection, the following data sets were

used as case studies.

As first step, in order to have a look at the behaviour of remote

ness and isolation degree, two  simple simulated data sets were

analysed. The first data set, a twodimensional simulated data set,
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Fig. 1. Approximating the distribution of locally centred squared Mahalanobis distances by �2
p (left) and Betadistribution (right), with p/2 and (n − p − 1)/2 degrees of

freedom.

consists of a cluster of 48 data samples and two additional samples

(49 and 50) quite distant from each other as well as  from  the main

sample cluster. A second twodimensional data set was simulated

with data samples roughly divided within four clusters and  a single

data sample localized more or  less between these clusters, in the

centre of the variable space.

The behaviour of the proposed two indices was also evaluated

by  another twodimensional data set, taken from  the literature and

commonly known as Ruspini, consisted of 75 objects [11].

The other benchmark data  sets were the wellknown chemo

metric data set Iris, comprised of 150 objects and 4 variables [12],

and the Italoil data  set taken from  a study that was  aimed to  clas

sify olive oils from  different parts of Italy based on their fatty acids

composition. It  reports the percentage composition of 8  fatty acids

(variables) within the lipid fraction for 572 Italian olive oil  samples

[13].

4.  Results and discussion

The locally centred squared Mahalanobis distances were cal

culated for  the two simulated and three benchmarked datasets

presented above. The objectoriented pairwise distance matrix

Fig. 2.  Plots of the first simulated data  set.
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Fig. 3.  Plots of the second simulated data set.

MD2
L was derived for  each of  them. The average distance values

from each row and the minimum distance values from each column

were retrieved from this distance matrix to  derive the remoteness

and isolation degree vectors, respectively. The values of  these two

parameters were used as  the point coordinates of all the data sam

ples in the RI  plot. Thresholds for  both remoteness and isolation

degree were calculated according to  Eq. (13) and reported in  the RI

plots by red lines. The data samples associated with very high val

ues for remoteness were classified as  outliers of first type being far

from the variable space defined by the bulk  of the data, i.e. remote

samples; the data samples associated with high  values of isolation

degree were classified as outliers of  second type, they being iso

lated from the other samples in spite of their  position within the

variable space, i.e. isolated samples.

To facilitate the performance evaluation of the newly proposed

approach the results were compared with those derived still using

the proposed definitions of remoteness and isolation degree as

obtained by the Euclidean distance and the classical Mahalanobis

distance. Principal component analysis (PCA) was also used to  bet

ter explain the results for  those cases where the number of variables

exceeded two.

The scatter plot of the first simulated data  set, together with the

RI plots obtained by  the locally centred Mahalanobis, Euclidean and

classical Mahalanobis distances are  shown in  Fig. 2.

As expected, two data samples 49 and 50 were highly isolated

from the cluster and far  from the bulk of  the data. This aspect can be

easily interpreted from the RI plot for  this simulated data set shown

in Fig. 2b. Both these data samples were associated with high values

for remoteness and isolation degree which clearly indicated that

they are quite isolated in  their local and global spaces. Moreover,

data sample 27 was  associated with a higher value of isolation as

compared to  the other  data samples in the cluster. A careful obser

vation of  the scatter plot in Fig. 2a indicates that sample 27 is within

the extremities of  the cluster as well as  no other data samples from

the cluster are very closely located in  its vicinity. This indicates

that the new approach is  quite sensitive to the isolation of the

samples.

The analogous RI plots obtained from  the Euclidean and classi

cal  Mahalanobis distances (Fig. 2c and 2d) confirm the anomalous

behaviour of samples 49, 50 and 27 but  also allow to detect the

samples 14 and 42 as isolated from the bulk of data, although they

have a small isolation degree as  for sample 27.

The second data set  used as case  study was  a  two–dimensional

simulated data  set with data samples roughly divided within four

clusters and a single data sample (49) localized more or  less

between these clusters. The scatter plot of this data set  in Fig. 3a

indicates this isolated sample clearly being a potential outlier;

however, it  was also interesting to see how the outlier detection

techniques were able to  analyse this data.

As expected, the novel outlier detection approach was able to

clearly identify sample 49 as  a  second type outlier based on its

extreme value for isolation degree. This result was achieved with

all the three metrics in analysis. Remoteness for  the data samples

was not extremely high for  any  specific data sample and  then no

first type outliers are detected. Samples 17, 30 and 32  that were not

very closely located to  their nearest of the four  clusters were also

identified with higher values of isolation degree (Fig. 3b). It  is note

worthy that locally centred Mahalanobis distance classifies sample
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Fig.  4. Plots of the Ruspini data set.

32 as isolated sample while this is not recognized by  Euclidean and

classical Mahalanobis distances. The latter, on  the contrary, iden

tify 4 and 12 as isolated samples, which indeed seem quite far  apart

from the centre of the cluster they belong to. Being the variable

space of this simulated example basically defined into a spher

ical space, the results obtained from  the Euclidean and classical

Mahalanobis distances are comparable.

The twodimensional Ruspini data set is shown in Fig. 4a. By

looking at  the object disposition, it  is quite apparent that no remote

samples are present, while several isolated samples can be detected

within the variable domain. In particular, the samples 51,  52 and  73

were associated with the highest isolation degree by all the three

metrics and, to a smaller extent, the samples 7 and 20. It  should be

noted that the two pairs of samples 54–55 and 74–75, which are

quite isolated, are not detected as isolated, they being very  near to

each other.

Also for this case study, the variable space being basically a

spherical space, the results obtained from the three metrics are

quite comparable. The most relevant differences are:  (1) Euclidean

distance identifies 50 as  remote sample (Fig. 4c); (2) sample 60 is

classified as isolated only by the method based on locally centred

Mahalanobis distances (Fig. 4b); (3) 1 and 4 are identified as iso

lated samples by Euclidean and classical Mahalanobis even if the

corresponding isolation degree values are not much larger than  the

threshold (Fig. 4c  and 4d).

Iris data set plots are collected in Fig. 5. As the variables are

four for this case study, the data set graphical visualization was

achieved in the reduced space of the first two principal components

(Fig. 5a).

For the Iris data set, the three RI plots gave very different infor

mation; Euclidean (Fig. 5c) and  classical Mahalanobis (Fig. 5d)

distances provided with several isolated samples, whereas the

locally centred Mahalanobis distance identified a few isolated sam

ples (i.e., 42, 126, 118, 132), which in addition are not very distant

from the threshold suggesting that they are  not seen as too much

isolated. Both locally centred (Fig. 5b) and the classical Mahalanobis

distance (Fig. 5d) identified the same remote samples (i.e., 132, 118,

135, 142, 115, 42,  107, 16, 136, and  146), whereas the Euclidean dis

tance seemed to be  able  to detect only a few of them (i.e., 132, 118,

16,  119), which are apparent anomalous samples also in the space

defined by  the first two  principal components (Fig. 5a). To further

investigate the reasons of anomalous behaviour of some samples

identified by  the RI plot based on locally centred Mahalanobis dis

tances, the 3D plot of  the Iris data set, derived from  the original

variables X1, X2, and X4, was  analysed along with the 3D plot on

PC2, PC3 and PC4 (Fig. 6).

In Fig. 6a,  it  can be noted that most of the detected remote sam

ples are located near the boundary of the data  space and thus are

correctly identified as  extreme samples. Considering this plot there

are three exceptions, i.e., samples 135, 142 and 146, which seem to

belong to the data bulk and, accordingly, do not appear as anoma

lous samples; however, if one switches to the principal component

space and considers the last PC4 (Fig. 6b), then these samples clearly

appear as  outliers. It  is also noteworthy that sample 126 is iden

tified as  isolated only by  the locally centred Mahalanobis distance

and looking at the plot of Fig. 6a although still belonging to the data

bulk it  indeed appears quite distant from its first neighbours. Only

the novel locally centred Mahalanobis distance is  able to clearly

detect this particularity since it  seems to  give more emphasis to

those samples that are distant from the data bulk along some direc

tion orthogonal to  the maximum variance direction; this is the case

of sample 126.
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Fig.  5.  Plots of the  Iris data set.

Finally, the Italoil data set was considered. The corresponding

plots are collected in Fig. 7, where the first plot (Fig. 7a) shows the

first two principal components of this data  set (explained variance

95.8%).

Also for the Italoil  data set, the RI plots based on Euclidean

(Fig. 7c) and classical Mahalanobis (Fig. 7d) distances identify a

quite large number of isolated samples; on  the contrary, the RI

plot based on the centred Mahalanobis distances identifies no  iso

lated samples. All the three RI plots classify several samples as

remote, they being associated with remoteness values larger than

the threshold. Almost all of these samples are located towards the

extremities of the data space and thus are correctly identified as

anomalous, as it  can be derived from  the PC  plot (Fig. 7a). It  is  note

worthy that,  unlike Euclidean distance, both the locally centred and

classical Mahalanobis distances do not highlight samples 263 and

317 as apparent remote sample since they are located along the

directions of maximum data variance. Moreover, as  shown in Fig. 7b

and d, both the Mahalanobis distances identify the sample 390  as

a potential outlier due  to  its extremely high  value for remoteness.

A deeper analysis of the 8  original variables for  the Italoil data set

did not provide any anomalous value for the sample 390; however,

through PCA, it was  possible to find out that considering the last

two PCs (7 and 8, explained variance 1.52%, Fig. 8) the sample 390

is completely far from the data  domain.

Fig. 6. 3D plots of Iris  data set: (a)  original variable X1, X2, and X4; (b) principal components PC2, PC3 and PC4.
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Fig. 7. Plots for the Italoil data set.

Fig. 8. Scatter plot of the last two PCs of the Italoil data set.

5. Conclusions

Locally centred Mahalanobis distances were derived centring

the data matrix on each sample, thus obtaining an  objectoriented

covariance matrix. The corresponding pairwise distance matrix for

a  data set was asymmetric in nature, unlike the one  derived with

the classical Mahalanobis distances centred on the data centroid.

The significance of row and column values in this asymmetric dis

tance matrix was discussed and later, two new parameters termed

as  Remoteness and Isolation degree were derived. The values cor

responding to these two parameters, when plotted on the axes of a

scatter plot, represent the isolation of data samples in  their global

and local spaces, thus allowing to  well differentiate the poten

tial outliers that diverged from the majority pattern of the data

samples. The plot derived from  Remoteness and Isolation degree

vectors was  called RI plot and proposed as useful tool to data set

analysis oriented towards potential outlier detection.

Considering simulated and benchmarked data sets from lit

erature as case studies, the values corresponding to these two

matrix parameters allowed identification of several diverse sam

ples, which were highly isolated in  their global and local

distance space. The usefulness of these matrix parameters was

more obvious while  dealing with multivariate data sets, where

the lack of data visualization somehow restricts the analyst

to well explore the data structure or  to  identify structurally

diverse compounds. In order to  better evaluate the performance

of this newly proposed approach, the results were compared

with those derived from Euclidean and classical Mahalanobis

distances.

Remoteness and isolation degree parameters (and the RI plot)

can be useful to  explore potential outliers from a given set of data,

using all the metrics discussed in this article, although the newly

proposed one appears more powerful in  taking into account covari

ance structures of complex multivariate data sets.

In conclusion, the implementation of locally centred squared

Mahalanobis distances and the RI plot adds something new to the

existing techniques towards outlier detection and a comprehensive

overview of  potential outliers.
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Appendix A. Lower and upper bounds of isolation degree

and remoteness

A necessary condition for the validity of the following theorems

is the existence of the inverse covariance matrices S(j),  for j =  1,. .  .,n.

The inverse exists if and  only if the determinant of S(j) is larger than

zero. This implies that the number of samples n must be greater

than the number of variables p  and that more than p  samples must

be different from each other.

Theorem 1. Idgj ∈ [0, 1]

Proof. (a) Lower bound: Idgj = 0 ⇔ xk =  xl for  k  /= l. Negative values

cannot occur.

(b) Upper bound: Suppose that there exists a j with Idgj > 1, i.e.

mini(MD2
L (i, j)) > 1

Since

n
∑

i=1

MD2
L (i, j)

=

n
∑

i=1

1

p
·  (xi − xj)

T

[

1

n − 1
·

n
∑

l=1

(xl −  xj)(xl −  xj)
T

]−1

(xi −  xj) = n − 1

for any j∈{1,. . .n}, we  have in  particular:

MD2
L (1, j) + . .  . + MD2

L (j  −  1, j) + 0 + MD2
L (j  + 1, j) + .  .  .  + MD2

L (n, j)

= n − 1

So, these are n−1  terms that have to  sum up to  n−1,  which is  in con

tradiction that the smallest term is already larger than  1. It follows

that the minimum is not larger than  1.

Theorem 2. Remi ∈
(

0, n−1
p

]

Proof. (a) Lower bound: Suppose that

Remi = 0 ⇔ MD2
L (i, 1) = .  .  .  = MD2

L (i, n)  = 0 ⇔ x1 = .  . . = xn

which would lead to singularity of S(j).  Thus, Remi can be arbitrarily

close to 0, but not  reach 0.  Negative values cannot occur.

(b) Upper bound: Consider the following property [14]:

maxx /=  0(xTBx/xTx)  = k1 and the maximum is attained if x = e1,

where e1 is the normed eigenvector of B to the largest eigenvalue

k1. Now consider

B =

[

n
∑

m=1

(xm − xj)(xm − xj)
T

]−1

Then we can find an  eigenvalue decomposition of B−1 of the form

B−1
=

p
∑

k=1

�kekeT
k

with �1 ≥  �2 ≥ · · · ≥  �p >  0, and normed eigenvec

tors ek. Then the inverse can be presented as B =

p
∑

k=1

1
�k

ekeT
k
. Now,

let e1 = x1 −  xj /=  0..

Then we have:

B−1
= (x1 − xj)(x1 − xj)

T
+

n
∑

m=2

(xm − xj)(xm − xj)
T

= �1e1eT
1 +

p
∑

k=2

�kekeT
k

with �1 =  1. Now setting x =  e1 in  maxx /= 0(xTBx/xTx), attains

k1 =  (1/�1)  = 1 as the maximum.

Note that

xTBx

xTx
= (x1 − xj)

T

[

n
∑

m=1

(xm − xj)(xm − xj)
T

]−1

(x1 − xj).

If we  build the sum over all j = 1, ...,  n, the resulting maximum is

n−1, because one of the terms is zero.  Since

Remi =
1

n − 1
·

n
∑

j=1

MD2
L (i, j)

=
1

n − 1
·

n
∑

j=1

1

p
· (xi − xj)

T

[

1

n − 1
·

n
∑

m=1

(xm − xj)(xm − xj)
T

]−1

(xi − xj)  =
1

n −  1
·

(n  − 1)2

p

it  follows immediately that the upper  bound is n − 1/p.
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Defining a novel k-nearest neighbours approach
to assess the applicability domain of a QSAR
model for reliable predictions
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Abstract

Background: With the growing popularity of using QSAR predictions towards regulatory purposes, such predictive

models are now required to be strictly validated, an essential feature of which is to have the model’s Applicability

Domain (AD) defined clearly. Although in recent years several different approaches have been proposed to address

this goal, no optimal approach to define the model’s AD has yet been recognized.

Results: This study proposes a novel descriptor-based AD method which accounts for the data distribution and

exploits k-Nearest Neighbours (kNN) principle to derive a heuristic decision rule. The proposed method is a

three-stage procedure to address several key aspects relevant in judging the reliability of QSAR predictions. Inspired

from the adaptive kernel method for probability density function estimation, the first stage of the approach defines

a pattern of thresholds corresponding to the various training samples and these thresholds are later used to derive

the decision rule. Criterion deciding if a given test sample will be retained within the AD is defined in the second

stage of the approach. Finally, the last stage tries reflecting upon the reliability in derived results taking model

statistics and prediction error into account.

Conclusions: The proposed approach addressed a novel strategy that integrated the kNN principle to define the AD

of QSAR models. Relevant features that characterize the proposed AD approach include: a) adaptability to local density

of samples, useful when the underlying multivariate distribution is asymmetric, with wide regions of low data density;

b) unlike several kernel density estimators (KDE), effectiveness also in high-dimensional spaces; c) low sensitivity to the

smoothing parameter k; and d) versatility to implement various distances measures. The results derived on a case study

provided a clear understanding of how the approach works and defines the model’s AD for reliable predictions.

Keywords: QSAR, Applicability domain, kNN, Nearest neighbour, Model validation

Background
The popularity of QSARs has seen a growth from time

to time and was complemented by the availability of

more sophisticated and efficient model development tech-

niques. This fact was further supported by the consider-

ation of QSAR predictions for regulatory purposes. To deal

with risk assessment of chemicals for their safe use, a new

European legislation – REACH (Registration, Evaluation,

Authorization and restriction of Chemicals) was approved

in the recent years [1]. To reduce animal testing and re-

placing them by cost effective methods, this law encourages

the use of QSARs as a possible alternative when enough ex-

perimental data is not available, provided that the model

was strictly validated for its regulatory consideration [2].

There are several aspects that must be taken into ac-

count before considering a QSAR model reliable enough.

In other words, the validity of a model has to be evalu-

ated. Existing literature has often emphasized upon val-

idating the QSAR models to reflect their robustness and

predictive ability. In 2004, following five OECD principles

for model validation were adopted to validate a QSAR

model for its regulatory consideration: a) a defined end-

point; b) an unambiguous algorithm; c) a defined domain

of applicability d) appropriate measures for goodness-of-

fit, robustness and predictivity and e) mechanistic inter-

pretation, if possible [3].
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Applicability domain (AD) of a QSAR model defines

the model’s limitation in its structural domain and re-

sponse space. In other words, this principle for model

validation restricts the applicability of a model to reliably

predict those test samples that are structurally similar to

the training samples used to build that model [4-6]. Sev-

eral approaches were proposed in the past years to de-

fine the AD of QSAR models. These approaches mainly

differed in the algorithm used to characterise the AD

within the descriptor space, where the model can predict

reliably [7,8]. For instance, some classical approaches

suggested defining the domain of applicability by a) con-

sidering the range of descriptors values; b) enclosing the

training space in a convex hull; c) calculating the dis-

tance of a query compound from a defined point within

the model’s descriptor space and d) estimating the Prob-

ability Density Function for the given data. All these ap-

proaches were associated with their own advantages and

limitations [2,7-10]. From time to time, several ap-

proaches were proposed that were aimed to be more ef-

ficient or were thought to overcome several limitations

of existing approaches.

This article proposes a new heuristic approach towards

defining the AD of QSAR models. The basis of this

novel strategy is inspired from the k-Nearest Neighbours

(kNN) approach and adaptive kernel methods for prob-

ability density estimation (kernel density estimators, KDE)

[11]. Due to its simplicity and easy implementation, kNN

had been a preferred choice for several proposed QSAR

studies [6,12-18].

In the classical kNN approach for AD evaluation

[6,18], average distances of all the training samples from

their k nearest neighbours are calculated and used to de-

fine a unique threshold to decide if a test sample is inside

or outside the model’s AD (for example, 95th percentile).

Moreover, in the framework of the probability density

function estimation, the nearest neighbour method pro-

vides density estimates depending on the Euclidean dis-

tance to the k-th nearest data point [19]. Following the

same concept, the proposed method tries to integrate the

kNN principle with the salient features of adaptive kernel

methods [11], which define local bandwidth factors corre-

sponding to the training data points and use them to build

the density estimate at a given point.

The novelty of the kNN based AD approach proposed

in this article lies in the overall strategy that is properly

executed in a three-stage procedure to encapsulate and re-

flect upon several significant aspects towards model valid-

ation. Moreover, some features common to most of the AD

approaches were dealt differently with this approach; for

instance, rather than defining a general threshold as in all

the distance-based approaches, each training sample in this

approach was associated with its individual threshold; in

order to find an optimal smoothing parameter k, this

approach performed a k-optimization procedure based on

Monte Carlo validation; additionally, model’s statistical pa-

rameters and other relevant aspects were dealt simultan-

eously to reflect upon the reliability in the derived results.

To better understand the strategy behind this approach,

it was implemented on a dataset from the literature. The

dataset was chosen from the CAESAR project to predict

the bioconcentration factor (BCF) [20,21].The derived re-

sults were discussed in comparison with those derived

from other literature AD approaches.

Methods
k-Nearest Neighbours principle from AD perspective

The kNN principle basically reflects upon the structural

similarity of a test sample to the training samples used to

build that model. In theory, the distance of a query sample

is considered from its k closest data points in the chemical

space. Lower distance values correspond to a higher simi-

larity, while the increasing distances signify higher levels

of structural mismatch. The k value plays a significant role

in defining how constraint the approach will be and thus,

it can be referred to as the smoothing parameter.

A stepwise execution of the following three stages

characterises the workflow of this approach:

1) defining thresholds for training samples

2) evaluating AD for new/test samples

3) optimizing the smoothing parameter k

To allow a better interpretation of the proposed ap-

proach, results on a two-dimensional simulated dataset

will be considered throughout the major part of this dis-

cussion and wherever applicable. As shown in Figure 1,

this dataset has a cluster of 48 training samples and the

remaining two training samples (49 and 50) are located

quite in the extremities of the space with respect to

these clustered samples.

Defining thresholds for training samples

Thresholds have a great influence in characterising the

AD for reliable predictions; a test sample that exceeds

the threshold condition is associated with an unreliable

prediction.

Like the adaptive kernel methods, instead of defining a

general unique threshold as seen with several classical

AD approaches, the proposed approach allocates a set of

thresholds corresponding to the various training samples.

For a given value of k, threshold allocation process can

be summarised as follows:

a) First of all, the distances of each training sample

from the remaining n – 1 samples are calculated and

ranked in increasing order, n being the total number

of training samples. This will result in a n x (n −1)
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neighbour table D; an entry Dij of the table

corresponds to the distance of the i-th sample from

its j-th nearest neighbour:

Di1 ≤Di2 ≤… ≤Di;n−1

b) The average distance of each i-th sample from its k

nearest neighbours is calculated considering the first

k entries in i-th row of the neighbour table:

!d i kð Þ ¼

Xk

j¼1

Dij

k
where; 1 ≤ k ≤ n−1 and !d i kð Þ ≤!d i k þ 1ð Þ

ð1Þ

A vector !d kð Þ of average distance values is then
derived considering all the samples in the training set.

c) Next, a reference value (from now on referred as Ref

Val), ed kð Þ is determined as follows:

ed kð Þ ¼ Q3 !d kð Þð Þ
þ 1:5 Q3 !d kð Þð Þ−Q1 !d kð Þð Þ½ & ð2Þ

where, Q1 !d kð Þð Þ and Q3 !d kð Þð Þ are the values

corresponding to the 25th and 75th percentiles in

the vector !d kð Þ, respectively [22].

d) Next, the ordered distances of each i-th training

sample from all other n - 1 training samples are

compared with the Ref Val. If the distance value of

the i-th sample from its given j-th training

neighbour (where 1 ≤ j ≤ n–1) is less than or equal

to the Ref Val, then that distance value is retained,

otherwise is discarded. The number Ki of neighbours

satisfying this condition, minimum zero and

maximum being n – 1, defines the density of the i-th

sample neighbourhood:

K i : Dij ≤
ed kð Þ

# $
∀j : 1; n−1 ð3Þ

e) Finally, each i-th training sample is associated with a

threshold ti which defines the width of its

neighbourhood as:

ti ¼

XK i

j¼1

Dij

K i
ð4Þ

If no distance value was retained for a given i-th train-

ing sample (Ki = 0), then its threshold ti would be theo-

retically settled to 0, but a pragmatic solution is to set it

equal to the smallest threshold of the training set.

The plot in Figure 2 provides with an overview of the

thresholds for all the 50 samples in the simulated dataset.

As expected, most of the training samples within the clus-

ter (for instance, samples 2, 33 and 39) were associated

with higher Ki values. On the other hand, obvious poten-

tial outliers (samples 49 and 50) had their thresholds equal

to 0 since they couldn’t satisfy the threshold criterion even

for a single training neighbour (i.e. Ki = 0), thus no dis-

tance values contributed to their threshold calculation.

Nevertheless, they were associated with the minimum

threshold equal to 0.42, i.e. the threshold of sample 43.

Figure 1 Scatter plot of the simulated dataset.

Figure 2 Simulated data set. Thresholds ti vs. number of training

neighbours Ki plot (k = 12).
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Evaluating AD for new/test samples

Until this point, each training sample was associated with

its individual threshold. The next step will be to character-

ise the AD which usually relies upon a set of conditions

that will decide if a given test sample can be associated

with a reliable prediction or not.

The criterion used by this approach to associate a

given test sample to be within the domain of applicabil-

ity can be summarised below.

Given a test sample, its distance from all the n training

samples is calculated and simultaneously, compared to

be less than or equal to the thresholds associated with

those training samples. If this condition holds true with

at least one training sample, the test sample will be con-

sidered inside the domain of applicability for that model.

Otherwise, the prediction for that test sample will be

rendered unreliable.

More formally, given the training set TR, for each test

sample j, the AD decision rule is:

j ∈ AD iff ∃i ∈ TR : Dij ≤ ti ð5Þ

where Dij is the distance between the j-th test sample

and the i-th training sample and ti is the individual

threshold of the latter. In addition, each test/new sample

will be associated with the number Kj of nearest training

neighbours for which the previous condition holds true.

This number can be assumed as a measure of prediction

reliability; indeed, high values of Kj indicate that the new

sample falls within a dense training region of the model’s

space, while low values of Kj denote that the new sample

still belongs to the model’s space, but located in sparse

training regions. Kj equal to zero rejects the sample as it

being outside the model’s AD since no training neigh-

bours are identified.

Figure 3 provides with the contour plot for the simu-

lated dataset derived projecting several data points enough

to fill the training space. Thresholds were calculated using

12 nearest neighbours and Euclidean distance. This choice

of k = 12 nearest neighbours was based on the results

derived performing an internal k-optimization, discussed

later in this article. The space enclosed around the cluster

represented as black line indicates that all the data points

within this enclosed region were inside the AD. Thus, this

region reflects in a way how the AD was characterised for

this two-dimensional dataset. Area of this enclosed region

tends to expand or shrink depending upon the number of

nearest neighbours used for threshold calculation.

As explained earlier, the extreme outliers in the train-

ing space will be associated with the number Ki of neigh-

bours equal to zero and the lowest possible threshold in

the training set. Consider the sample 49 from the simu-

lated dataset which is an extreme outlier with its thresh-

old equal to 0.42. If there is a test sample that seems to

be quite in the vicinity of this potential outlier within

the descriptor space, the test sample will be associated

with an unreliable prediction since its distance from

sample 49 will likely exceed the small threshold. Now,

consider a case, where the descriptor values for another

test sample exactly overlap or are very similar to those

for this potential outlier. In this situation, the distance of

that sample from the outlier will be less than the thresh-

old and thus it will be considered within the domain of

applicability. In theory, this is not wrong because the po-

tential outlier is still a part of the training space. Practi-

cally, the approach retains all the training samples to

characterize the AD but minimizing the role of potential

outliers in doing so. That’s the reason why the first test

sample was excluded from being reliably predicted while

the second sample was not. However, for the latter the

number Kj of nearest training neighbours will likely be

equal to one indicating that its prediction has some de-

gree of uncertainty. In conclusion, there exists a relation

between the defined AD and the impact of training sam-

ples in characterising it based on their threshold values.

Optimizing the smoothing parameter k

Another important aspect is concerning the choice of an

appropriate smoothing parameter k, whose theoretical

range is between 1 and n-1.

Very low k values will restrict the domain of applic-

ability in a very strict manner as compared to the AD

derived opting for larger k values. This is because, an

opted k value will have a direct impact on the threshold

calculations which in turn can make it more rigid or easier

Figure 3 Simulated data set. Contour plot to demonstrate how

the AD was characterised. Metric used: Euclidean distance; k = 12.
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for test samples to satisfy the threshold criterion. The

strategy implemented in this article to select an appropri-

ate k value was performed by Monte Carlo validation,

maximizing the percentage of the test samples considered

within the AD, i.e. satisfying AD criterion (Equation 5).

Box-and-whisker plots (box plots) were produced to

get an overview of all these derived results. For instance,

consider the plot in Figure 4 derived for the simulated

dataset showing percentage of test samples retained within

the AD with different k values (optimization carried out

with 20% of samples in the test set and 1000 iterations).

Median quartile in the middle of the box (marked in

red) can be referred for all the k values to get a hint

about how many test samples were retained on average

during the optimization process for a given k value. The

top and bottom edges of each box plot (quartiles Q3 and

Q1) correspond to 75th and 25th percentile, respectively.

The whisker can extend further from Q1–w(Q3 −Q1)

until Q3 +w(Q3 −Q1), of 1.5 [23]. The test samples fall-

ing outside this coverage are considered as outliers and

are highlighted as ‘+’ in red. About their usefulness in

the proposed AD approach, box plots showing limited

spread and allowing majority of test samples to be

retained within the AD can be favoured and their corre-

sponding range of k values can be considered to finally

opt for the most appropriate k. Additionally, a line plot

is integrated in the same figure indicating the mean per-

centage of test samples that were considered within the

AD for each k value. A simultaneous interpretation of

both these plots can make it easier for a user to decide

upon an appropriate k value.

Figure 4 shows that the spread of the box plots for ini-

tial k values is quite large. This may have resulted due to

the impact of restricted training thresholds that excluded

several test samples from the AD. With an increase in k

values, the spread narrowed, however the outliers were

still present until k = 17. After this point, the box plots

remained unchanged throughout the plot with no out-

liers. Similar observations were derived from the mean

line plot which showed a significant rise initially fol-

lowed by a stable curve until the first half of the k

values. The plot didn’t show any major changes for the

second half of the k values. In order to avoid very high k

values good enough to unnecessarily expand the defined

AD, a k value of 12 was opted as appropriate k for this

dataset. The plots dealt earlier (Figures 2 and 3) for this

dataset were thus derived using this opted k value.

We also performed an extended analysis on several di-

verse data sets (results not reported in this paper), to study

the influence of the smoothing parameter k on model’s

AD definition. It was concluded that optimization of k can

be a time-demanding procedure especially in the case of a

huge number of samples, but it was also observed that this

approach is quite insensitive to the smoothing parameter

k, except for very small k values which led to the results

influenced by local noise. Therefore, for many applications

the optimization of the smoothing parameter can be

avoided and reasonable results can instead be obtained by

a fixed k value empirically calculated as n1/3.

Reflecting the reliability in derived results

After the AD approach has been applied to the model of

interest, several features will be taken into account to re-

flect upon the derived results. Moreover, as stated earlier

the response domain will be taken into account to address

the reliability in the results derived by characterising the

AD of a model in its descriptor space.

In order to reflect upon a model’s predictive ability, the

predictive squared correlation coefficient (Q2) was used.

Since the test samples excluded from the model’s AD are

unreliably predicted, in theory they should not be ac-

counted for to calculate the model’s statistics (Q2).

The following key parameters were evaluated:

a) Number of test samples retained within the AD.

b) Q2 calculated from the test samples retained within

the AD [24,25]:

Q2 ¼ 1−

XnTS

j¼1

ŷ j−yj

% &2
" #

=nTS

XnTR

i¼1

yi−!yTR
) *2

" #
=nTR

ð6Þ

where, yj is the measured response value for the j-th

sample and ŷj its predicted value; nTR and nTS
represent the total number of training and test

Figure 4 Simulated data set. Box-and-whisker plot of test samples

(%) retained within the AD for different k values during

k-optimization.
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samples, respectively, and !yTR is the mean response

of the training set.

c) List of all the test samples considered outside the

AD.

d) For each j-th test sample, the absolute standardized

error calculated as:

SEj ¼
yj−ŷj

+++
+++

sY
ð7Þ

where, yj is the measured value for the j-th sample

and ŷj its predicted value; sY the standard error of

estimate derived from the training set.

e) The information about how many times the

threshold criterion (Equation 5) is satisfied by each

test sample, that is, how many training neighbours

(i.e. Kj) are located at a distance less than or equal to

their threshold values, from a given test sample.

In theory, a test sample satisfying the threshold criterion

several times (i.e. having high Kj) is expected to be pre-

dicted with higher accuracy. This can be desired since less

distant training neighbours indicate a higher structural

similarity of the test sample. On the contrary, a test sam-

ple satisfying the threshold criterion for no training neigh-

bours (Kj = 0) indicates that there wasn’t any training

sample similar enough to reliably predict that test sample.

Results and discussion
As the case study to derive results with the proposed strat-

egy, the CAESAR Model 2 to predict bioconcentration

factor (BCF), which was developed under the EU project

CAESAR following the REACH requirements, was se-

lected. It is a Radial Basis Function Neural Network

(RBFNN) model derived from 378 training and 95 test

samples [20,21]. The five descriptors used to develop this

model were calculated using Dragon 5.5 [26].

The statistics for this model are summarized in Table 1.

For comparison purposes, some AD approaches taken

from literature [2,7-10] were implemented on the se-

lected case study. Among them, the classical kNN-based

AD approach [6,18] was implemented by calculating

average distances of all the training samples from their 5

nearest neighbours (i.e. k = 5); since the choice of

thresholds didn’t follow any strict rules in the existing

literature, the value corresponding to 95th percentile in

this vector of average distances was considered as gen-

eral threshold. If the average distance of a test sample

was lesser than or equal to the threshold value, the test

sample was retained within the AD.

In addition to the classical kNN-based AD approach,

the following methodologies were considered [2,7-10]: the

Bounding Box, which is based on the ranges of model var-

iables; its variant based on principal components instead

of the original variables (PCA-Bounding Box); the Convex

Hull, which is the smallest convex area that contains the

original set; two distance-based methods, which calculate

the distance (Euclidean and Mahalanobis) of a test sample

from the data centroid and use the 95th percentile of the

training sample distances as threshold.

Finally, some methods for probability density function

estimation were also considered. Among the multivariate

kernel density methods, four variants of Gaussian kernel

estimators were implemented [19]: fixed Gaussian kernel

with bandwidth equal to 0.462 (for the studied data set);

optimized Gaussian kernel with a smoothing parameter

equal to 0.237 obtained by leave-one-out cross-validation

[27]; variable Gaussian kernel with bandwidth calculated as

the inverse function of the Euclidean distance to k-th neigh-

bour (k = 15) [27]; adaptive Gaussian kernel, with fixed

Gaussian kernel as the pilot estimate and sensitivity param-

eter α equal to 0.5. Finally, Epanechnikov kernel with a

fixed bandwidth equal to 1.961 and the nearest neighbour

density estimator with smoothing parameter k equal to 15,

were also considered [19].

For all the implemented methods, except for Bounding

Box and Convex Hull, autoscaling was adopted as data

pretreatment.

The proposed AD strategy was implemented in

MATLAB [28] using autoscaled Euclidean distances. The

k-optimization procedure was carried out initially to de-

cide upon an optimal k value; the training set of 378 sam-

ples was randomly partitioned 1000 times selecting 20%

of samples in the test set (i.e. 75 samples). The box plots

in Figure 5 summarize the percentage of test samples

retained within the AD for different k values (up to 25).

As expected, the first lower k values were associated

with box plots having highest spread. This degree of dis-

persion lowered gradually with increase in number of

neighbours considered. The line plot of the mean showed

an increase in the number of samples throughout the plot,

however, this increment after initial k values was gradual.

Based on their lower spread and preference to retain rea-

sonably higher number of samples within the AD (as

reflected from their median), the k values in the range of

15–19 were considered further to decide upon an optimal

k. Finally, to avoid unnecessarily higher training thresholds

and their resulting impact on the defined AD, k = 15 was

Table 1 Summary of model statistics for the case study

Model Training set Test set

nTR R2 RMSE nTS Q2 RMSEP

CAESAR Model 2 378 0.804 0.591 95 0.797 0.600

R
2 Determination coefficient; RMSE Root-mean-square error; Q2 Predictive

squared correlation coefficient; and RMSEP Root-mean-square error

of prediction.
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considered as an optimal choice for this case study. Con-

sidering the selected k value of 15, the novel AD approach

identified four test samples (33, 61, 82 and 83) being out-

side the model’s AD.

To reflect upon the reliability in the results derived

with this approach, absolute standardized error of all the

test samples was plotted against their corresponding Kj

values. As shown in Figure 6, four test samples consid-

ered outside the AD with this approach were associated

with a value of Kj = 0. The absolute standardized error

for sample 33 was quite higher as compared to the

remaining three samples. As seen clearly from the plot,

there had been a sharp decrease in the prediction error

of test samples with an increase in Kj. However, it can’t

be denied that this pattern wasn’t rigidly followed in the

results. There had been test samples with very low Kj

values but extremely low or negligible absolute standard-

ized error, meaning that even less reliable predictions

can have good accuracy. In any case, this plot somehow

tried to interpret the AD results derived in model’s de-

scriptor space taking into account the response domain,

and clearly informed about both, reliability and accuracy

in the predictions of the test samples. Most of the pre-

dictions had good accuracy, them being within two units

of standardized error and high reliability. The samples

corresponding to these reliable predictions were associ-

ated with higher Kj values, thus being well represented

by several training samples.

Generally, a standardized error of two/three units is

usually considered as a warning value for outliers detec-

tion. In Figure 6, six test samples (12, 33, 51, 52, 75 and

90) exceeded a two-unit threshold for the absolute stan-

dardized error indicating them as outliers in the model’s

response domain. It can be interesting to further evalu-

ate the reasons behind categorising them as outliers;

however, this is beyond the scope of this article as the

proposed AD approach is defined within the model’s de-

scriptor space. Nevertheless, this evaluation identifies

sample 33 as an outlier in model’s descriptor’s space as

well as its response domain which further supports the

results derived from the proposed approach to exclude

this sample from the model’s AD.

Finally, the results derived by this approach were com-

pared with those derived from classical AD approaches.

Table 2 reports these results; the first row shows results

when no AD approach has been applied to bound the

model’s descriptor space.

The number k of nearest neighbours considered with

the proposed approach (i.e. 15) was comparatively higher

than the one considered with classical kNN (i.e. 5); how-

ever, the impact on model statistics was not so obvious

on the resulting Q2, while the number of retained sam-

ples increased from 87 (classical kNN) to 91 (proposed

approach). Discussing the results derived with classical ap-

proaches, number of samples retained within the AD var-

ied significantly depending on what strategy was used.

Convex hull, optimized and variable Gaussian kernel

methods retained the least number of samples while the

Bounding Box considered none of the test samples outside

the AD. Overall, the proposed approach worked quite well

on the CAESAR model, trying to define an AD with max-

imum retained test samples within the domain and posi-

tive impact on the model statistics.

The last column of Table 2 reports the list of samples

considered outside the AD with all the approaches. Irre-

spective of total number of samples considered outside

Figure 6 CAESAR BCF model. Absolute standardized error of test

samples plotted against their Kj values.

Figure 5 CAESAR BCF model. Box-and-whisker plot of test

samples (%) retained within the AD for different k values during

k-optimization.
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the AD, all the methods converged significantly identify-

ing a subset of common samples that were always ex-

cluded from the model’s AD.

Conclusions
A novel kNN-based approach to define the AD of QSAR

models was proposed. The overall execution of this ap-

proach was performed in three different phases that ef-

ficiently used the salient features of kNN principle to

define a model’s AD in its descriptor space. Significant

features that distinguished the proposed AD approach

include defining individual threshold for each training

sample, optimizing the smoothing parameter k to be

considered and taking into account the model’s response

domain to reflect upon the reliability of results derived

in its descriptor space.

In the proposed AD method, the appropriate number

k of neighbours can be chosen on the basis of the plot

with retained samples vs. k values obtained by Monte

Carlo validation; it allowed to identify a smoothed region

of the k values where the results remained unchanged,

ensuring high robustness in the AD definition.

The results on the selected case study defined an AD

with a positive impact on model statistics retaining max-

imum possible samples that were reliably predicted.

Comparison of the derived results with those from the

classical approaches by no means intended to project

the pitfalls of existing approaches but it was aimed to

have a performance evaluation of this novel strategy to

understand how its implementation could lead to obtain

similar or different results as compared to the classical

ways of defining the AD. An extended comparison of the

different AD approaches on several diverse data sets have

indicated the following relevant features that characterize

the proposed AD approach: a) adaptability to local density

of samples, useful when the underlying multivariate distri-

bution is asymmetric, with wide regions of low data density;

b) unlike several kernel density estimators, effectiveness

also in high-dimensional spaces; d) low sensitivity to the

smothing parameter k; d) versatility to implement various

distances measures other than Euclidean distance, such as

Manhattan distance, Mahalanobis distance and the recently

proposed locally-centred Mahalanobis distance [29], de-

pending on the data set in analysis.

A MATLAB module for the model’s AD estimate by

different approaches will be soon available at http://

michem.disat.unimib.it/chm/.
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Table 2 Comparison of AD methods applied to the test set of CAESAR BCF model

Approach IN AD Q2 OUTSIDE AD

All samples inside (no AD approach) 95 0.797 None

Proposed approach (Euclidean dist., k = 15) 91 0.803 33 61 82 83

Bounding box 95 0.797 None

PCA bounding box 93 0.804 33 40

Convex hull 73 0.789 3 7 9 13 18 33 34 36 37 38
39 40 41 43 51 56 61 72 79 91 92 94

Euclidean dist (95 percentile) 88 0.802 3 33 36 37 40 42 61

Mahalanobis dist (95 percentile) 89 0.791 18 43 54 61 83 91

Classical kNN (Euclidean dist., k = 5) 87 0.797 3 33 34 40 61 82 83 94

Fixed Gaussian kernel 85 0.794 3 24 33 34 40 61 82 83 91 94

Optimized Gaussian kernel 66 0.831 3 912 22 24 33 34 38 40 45 47 51 53 54
56 61 68 69 75 76 80 82 83 87 89 91 93 94 95

Variable Gaussian kernel (k = 15) 81 0.790 3 24 33 34 40 43 61 80 82 83 89 91 94 95

Adaptive Gaussian kernel 88 0.801 3 33 43 61 82 83 91

Fixed Epanechnikov kernel 87 0.799 3 33 40 43 61 83 91 94

Nearest neighbour density estimator (k = 15) 91 0.806 3 33 61 91
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