
Università degli Studi di Milano-Bicocca
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part I

Theory





chapter 1

Introduction

1.1 Introduction

Large databases of protein sequences and structures are now freely available
(http://www.pdb.org). Analogously the increasing number of peptide sequences
with different lengths, available from synthesised peptide libraries and sequenced
proteins are potentially valuable for evaluating structure-activity relationships
[Gallop et al. (1994)].

However, in order to apply multivariate regression and classification searching
for Quantitative Structure-Activity Relationship (QSAR) on such sequences, it
is necessary to have a preprocessing method that translates them into a uniform
set of variables.

In order to characterise and predict properties of this kind of molecular struc-
ture a molecular descriptor based approach is suitable. Unfortunately a tradi-
tional molecular descriptor based approach is not always applicable to molecule
with thousands of atoms, such as proteins. During the last years different method-
ology in order to describe peptides and proteins have been published, the most
used are the methods based on z-scores [Hellberg et al. (1987), Sjstrm et al.
(1995), Sandberg et al. (1998), Andersson et al. (1998), Edman et al. (1999),
Nystrm et al. (2000), Doytchinova et al. (2002), Doytchinova and Flower (2003),
Guan et al. (2005), Doytchinova and Flower (2005, 2006b,a, 2007b,a)].

http://www.pdb.org
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Figure 1.1: The information content of a molecular descriptor depends on
the kind of molecular representation that is used and on the defined algo-
rithm for its calculation. Obtained molecular descriptors are then suitable for
modelling.

During this PhD thesis a novel methodology has been deeply evaluated, this
methodology is based on some traditional molecular descriptors calculated on
a simplified representation of peptides and proteins. This representation avoid
problems related to molecular size and information redundancy due to the com-
mon structural features of every amino acid. The proposed methodology has
been applied both on peptide and protein data sets.

1.2 Thesis structure

This thesis is focused on the study of a novel characterisation of proteins and
peptides using a descriptors-based approach. The calculated descriptors values
are then analysed by means of multivariate analysis. Consequently, chemometric
methods applied in this thesis have been deepened described and analysed.

Great attention has been also given to variable (or feature) selection methods,
since the great number of obtained molecular descriptors needs to be reduced in
order to obtain reliable regression models.

Summarising, the structure of the thesis can be outlined with the following
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points:

1. in the first part of the thesis a brief introduction to chemometrics and
QSAR is presented in chapter 2, in the same chapter proteins and peptides
are shortly described in order to characterise the studied molecular struc-
tures. In chapter 3 the protein representation applied in order to calculate
the molecular descriptors is presented. Afterwards the molecular descrip-
tors chosen to represent protein and peptide structures are described and
explained in chapter 4. Finally the chemometric methods used to analyse
the data matrices obtained from the calculation of molecular descriptors on
three different data sets studied in this thesis are described in chapter 5;

2. in the second part of the thesis, applications of the proposed approach on
three different data sets are presented. In chapter 6 a brief resume of all
the applications is showed; in chapters 7 a sensitivity analysis of the pro-
posed method on a computationally generated data set of protein mutants
is presented; in chapter 8 a cluster analysis of two different protein folds
collected from the SCOP [Murzin et al. (1995), LoConte et al. (2002), An-
dreeva et al. (2004)] database is described showing how different character-
isation of amino acids drive to different highlighted information; in chapter
9 a QSAR analysis based on 20 peptide sequences of different lengths is
presented.

In order to give the possibility to test and trial the molecular descriptors-
based approach described in this thesis a web-based application has been also
developed. The presentation of this application is collected in chapter 10.

All the descriptors calculated during this PhD thesis have been calculated
using an ongoing implementation of dragonX, software for molecular descriptors
calculation [Mauri et al. (2006), dra (2007)].





chapter 2

Chemometrics, QSAR, Peptides

and Proteins

A brief introduction on chemometrics and Quantitative Structure Activity Rela-
tionships (QSAR) is given in this chapter. Chemometric methods have been used
in order to analyse data useful to build QSAR models. Peptides and proteins are
also briefly described in order to understand the molecular structure of these kind
of molecules whose analysis is the scope of this thesis.

2.1 Chemometrics

Chemometrics has been defined in broad terms as the science of relating mea-
surements made on a chemical system or process to the state of the system via
application of mathematical or statistical methods according to the International
Chemometrics Society, 2002.

However, the definition of the word chemometrics has been a subject of discus-
sion and no exact consensus is available, despite of the fact that two international
scientific journals and numerous of international and national scientific societies
are dedicated to chemometrics and use the word in their titles. It is known
that Svante Wold invented the word chemometrics in 1972 to describe the dis-
cipline of extracting chemically relevant information from chemical experiments
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Figure 2.1: Chemometric rule in the knowledge circle

[Wold (1972)]. He tried to re-define the word as how to get chemically relevant
information out of measured chemical data, how to represent and display this in-
formation, and how to get such information into the data [Wold (1990)]. A more
precise definition can be found in a textbook by Massart et al. [Massart et al.
(1997)], stating that chemometrics is the chemical discipline that uses mathe-
matics, statistics and formal logic (a) to design or select optimal experimental
procedures; (b) to provide maximum relevant chemical information by analysing
chemical data; and (c) to obtain knowledge about chemical systems (Figure 2.1).
This definition is very close to the formulation used by Svante Wold and Bruce
Kowalski when founding the first Chemometrics Society in 1974.

The use of chemometrics also implies the use of multivariate data analysis,
in which several related molecules are analysed simultaneously. A multivariate
approach when handling and exploring complex chemical data and designing ex-
periments is certainly part of the foundation of chemometrics. Multivariate data
analysis as opposed to using only one or a few variables in the data analysis is
based on the fact that complex problems - by nature - need multiple variables
to be described. Thus, by using and combining more variables, more informa-
tion about the chemical system can be retrieved. In standard multivariate data
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analysis, data are arranged in a two-way structure, a table or a matrix. An ex-
ample is a table in which each row corresponds to a sample and each column to
a variable describing the complex system. This is the typical input for multi-
variate techniques: when these matrices are analysed by means of chemometrics,
all the variables are considered at the same time and consequently the extracted
information represent a global overview of the system.

Since chemometrics proved to be able to handle large amounts of data and
to extract useful information, it has been successfully applied in different fields.
During the last years it has so increased in uses and applications that now modern
analytical techniques are usually combined with chemometric methods.

2.2 QSAR and Molecular Descriptors

Chemometrics has been most successfully applied in four areas, namely:

1. multivariate calibration;

2. quantitative structure-activity relationship (QSAR) studies;

3. pattern recognition, classification and discriminant analysis;

4. multivariate modeling and monitoring processes.

In QSAR the aim is correlate chemical data series of compounds (i.e. com-
pounds contained in a “chemical space”) to a biological activity. “Biological ac-
tivity”relates to the strength of interaction of a compound with a target, whatever
the target is, e.g. an organism, a cell, or a protein.

The essence of the QSAR methodology is developing a relationship between
an observed property and structural features of a molecule. By considering a set
of molecules, a predictive model is developed that can then be used to predict
the activity of other molecules. The key words here are “structural features”.
The approach depends on being able to represent the structure of a molecule in
numerical form. The numerical representations of molecules are termed descrip-
tors, and a wide variety of descriptors can be calculated. These include simple
forms such as molecular weight and atom counts or more complex types such as
partition coefficients and surface-property descriptors.

Given a set of descriptors, a QSAR model can be built by defining a relation-
ship between these descriptors (also known as the independent variables) and
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Figure 2.2: Role of molecular descriptors in Quantitative Structure-
Activity Relationship (QSAR) and Quantitative Structure-Property Relation-
ship (QSPR)

the observed property (termed the dependent variable). The first QSAR models,
developed by Hansch [Hansch and Fujita (1964), Hansch (1969)] and Free-Wilson
[Free and Wilson (1964)] specified linear relationships. Even now, linear models
are widely used owing to their simplicity and ease of development.

2.3 Peptides and proteins

Peptides are short polymers formed from the linking, in a defined order, of α
amino acids. The link between one amino acid residue and the next is known as
an amide bond or peptide bond.

Proteins are polypeptide molecules (or consist of multiple polypeptide sub-
units). The distinction is that peptides are short and polypeptides/proteins are
long. Proteins and peptides share the same basic structure, both are made by
sequences of amino acids. All amino acids share common structural features in-
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Figure 2.3: The general structure of an α amino acid, with the amino group
on the left and the carboxyl group on the right (1) and the condensation of
two amino acids to form a peptide bond

cluding an α-carbon to which an amino group, a carboxyl group, and a variable
side chain are bonded. Only proline differs from this basic structure, as it contains
an unusual ring to the N-end amine group, which forces the CO-NH amide moiety
into a fixed conformation [Nelson and Cox (2005)]. The side chains of the stan-
dard amino acids, detailed in the list of standard amino acids (Table 2.1), have
different chemical properties that produce proteins’ three-dimensional structure
and are therefore critical to protein function. The amino acids in a polypeptide
chain are linked by peptide bonds formed in a dehydration reaction. Once linked
in the protein chain, an individual amino acid is called a residue and the linked
series of carbon, nitrogen, and oxygen atoms are known as the main chain or
protein backbone.

The general formula of an α amino acid is H2NCHRCOOH, where R is an
organic substituent. In the α amino acids, the amino and carboxylate groups are
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Table 2.1: The twenty standard amino acids and their side chain (SC) chem-
ical properties.

Amino Acid 3-Letter 1-Letter SC polarity SC acidity or basicity
Alanine Ala A nonpolar neutral
Arginine Arg R polar basic (strongly)
Asparagine Asn N polar neutral
Aspartic acid Asp D polar acidic
Cysteine Cys C polar neutral
Glutamic acid Glu E polar acidic
Glutamine Gln Q polar neutral
Glycine Gly G nonpolar neutral
Histidine His H polar basic (weakly)
Isoleucine Ile I nonpolar neutral
Leucine Leu L nonpolar neutral
Lysine Lys K polar basic
Methionine Met M nonpolar neutral
Phenylalanine Phe F nonpolar neutral
Proline Pro P nonpolar neutral
Serine Ser S polar neutral
Threonine Thr T polar neutral
Tryptophan Trp W nonpolar neutral
Tyrosine Tyr Y polar neutral
Valine Val V nonpolar neutral

attached to the same carbon, which is called the α-carbon. The various α amino
acids differ in which side chain (R group) is attached to their α-carbon. They
can vary in size from just a hydrogen atom in glycine, through a methyl group
in alanine, to a large heterocyclic group in tryptophan. α amino acids are the
building blocks of proteins. A protein forms via the condensation of amino acids
to form a chain of amino acid “residues”linked by peptide bonds.

Proteins are defined by their unique sequence of amino acid residues; this se-
quence is the primary structure of the protein. Just as the letters of the alphabet
can be combined to form an almost endless variety of words, amino acids can be
linked in varying sequences to form a huge variety of proteins. Twenty amino
acids are encoded by the standard genetic code and are called standard amino
acids. In the structure shown in Figure 2.3, the R represents a side chain specific
to each amino acid. The central carbon atom called Cα is a chiral central carbon
atom (with the exception of glycine) to which the two termini and the R-group
are attached. Amino acids are usually classified by the properties of the side
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chain into four groups. The side chain can make them behave like a weak acid, a
weak base, a hydrophile if they are polar, and hydrophobe if they are nonpolar.
The chemical structures of the 20 standard amino acids is shown in Figure 2.4,
along with their chemical properties, are catalogued in the list of standard amino
acids in table Table 2.1.

Figure 2.4: Chemical structures of the 20 standard amino acids. Name,
abbreviations and molecular weights are reported.

Depending on the polarity of the side chain, amino acids vary in their hy-
drophilic or hydrophobic character. These properties are important in protein
structure and protein-protein interactions. The importance of the physical prop-
erties of the side chains comes from the influence this has on the amino acid
residues’ interactions with other structures, both within a single protein and be-
tween proteins. The distribution of hydrophilic and hydrophobic amino acids
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determines the tertiary structure of the protein, and their physical location on
the outside structure of the proteins influences their quaternary structure. For
example, soluble proteins have surfaces rich with polar amino acids like serine and
threonine, while integral membrane proteins tend to have outer ring of hydropho-
bic amino acids that anchors them into the lipid bilayer, and proteins anchored
to the membrane have a hydrophobic end that locks into the membrane.

Similarly, proteins that have to bind to positively-charged molecules have
surfaces rich with negatively charged amino acids like glutamate and aspartate,
while proteins binding to negatively-charged molecules have surfaces rich with
positively charged chains like lysine and arginine.



chapter 3

Protein and Peptide

representation

Chemical compounds are usually represented as molecular graphs [Harary (1971)],
i.e. non-directed, connected graphs in which vertices correspond to atoms and
edges represent covalent bonds between atoms. The molecular graph model of
the chemical structure emphasises the chemical bonding pattern of atoms [Bala-
ban (1976)]. The molecular graph model is appropriate for prediction of physical,
chemical or biological properties of the studied molecules.

3.1 Introduction

In QSAR (Quantitative Structure-Activity Relationships) molecular descriptors
are generally calculated considering all the atoms belonging to a molecule, or to
an H-depleted representation of the molecule. As introduced in chapter 1 the tra-
ditional approach in order to calculate molecular descriptors on long peptides and
proteins is often inapplicable due to the huge amount of atoms constituting big
molecules such as polypeptides and proteins. We need to take into considerations
that molecules usually studied with QSAR methodology and molecular descrip-
tors are usually constituted of tens of atoms, rarely molecules with hundreds of
atoms are studied introducing longer computational time. Anyway traditional
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QSAR methodology can be applied to molecules with hundreds of atoms but
proteins usually being constituted of thousands of atoms are not suitable to the
traditional approach.

Figure 3.1: Three possible representations of the three-dimensional struc-
ture of the protein triose phosphate isomerase. Left: all-atom representa-
tion colored by atom type. Middle: simplified representation illustrating
the backbone conformation, colored by secondary structure. Right: Solvent-
accessible surface representation colored by residue type (acidic residues red,
basic residues blue, polar residues green, nonpolar residues white).

3.2 Proteins and peptides representation: state

of the art

The most used approach in order to characterise peptides is a method that model
biological properties of small peptides as a function of amino acid principal prop-
erties. This approach has been introduced by Kidera et al. [Kidera et al. (1985)]
that first coded the natural amino acids through 10 orthogonal factors derived
from principal component analysis (PCA) of 188 reported properties. This line
of research was followed by Hellberg et al. [Hellberg et al. (1987), Jonsson et al.
(1989), Hellberg et al. (1991), Sandberg et al. (1998)] who developed principal
properties, or z-scores, for each of 20 natural amino acids and for a series of
unnatural ones. These were derived by carrying out principal components anal-
ysis (PCA) of numerous amino acid properties like HPLC retention times, pKas,
NMR-derived properties, and other measurable variables related to hydropho-
bicity, size, and electronic features. The authors called the first three princi-
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pal component scores of each amino acid its z1, z2, and z3 scores or principal
properties. These were interpreted to represent largely hydrophilicity, side chain
bulk/molecular size, and electronic properties, respectively. The three principal
properties for the amino acid in each position in a peptide were then used to con-
struct models. With the three z-scales it is possible to numerically quantify the
structural variation within a series of related peptides, by arranging the z-scales
according to the amino acid sequence. The general formula for this approach can
be written as the summation:

y =
N∑
i=1

3∑
j=1

bijzij (3.1)

Where N is the number of amino acids constituting the peptide sequences, bij is
the regression coefficient and zij is the z-score associated to the i-th amino acid.
Through z-scores and multivariate statistical regressions, successful models have
been provided in QSAR studies for peptides active on oxytocin, bradykinin, and
substance P receptors or in QSPR studies on sweetener peptides [Hellberg et al.
(1986, 1987), Jonsson et al. (1989)].

Similar results were obtained by Cocchi et al. [Cocchi and Johansson (1993)]
with another parametrization of amino acid side chains. In this approach the
scores derived from a PCA of the interaction energies calculated with program
GRID [Goodford (1985)], here defined as t-scores, turned out to be effective when
applied in a QSAR study of a set of dipeptide ACE inhibitors. In 1995 Collantes et
al. [Collantes and Dunn III (1995)] showed that two computable 3 -dimensional
descriptors, Isotropic Surface Area (ISA) and Electronic Charge Index (ECI),
may be usefully applied as side-chain descriptors. While ISA correlates well
with z-score values and with Fauchere and Pliskas hydrophilicity scale [Fauchere
and Pliska (1983)], ECI showed good correlation with amino acid free energy of
vaporization [Wolfenden et al. (1981)].

In addition to these representation of peptides Zaliani et al. [Zaliani and E.
(1999)] proposed new descriptors for the natural amino acids which have been
derived from the principal component analysis (PCA) applied on the MS-WHIM
3D-description matrices [Todeschini et al. (1994), Bravi et al. (1997), Gancia
et al. (2000)]. MS-WHIM indexes are a collection of 36 statistical indexes aimed
at extracting and condensing steric and electrostatic 3D-properties of a molecule.
These descriptors have been developed both on extended side-chain conformation
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and on rotamer library of natural amino acids.
These approaches produced good models for small peptides but has the dis-

advantage for those larger than a few amino acids than the number of terms to
fit, and as a result, the number of peptides needed to construct a model is large
[Siebert (2001, 2003)].

3.3 Proteins and peptides as sequence of α car-

bons

The descriptor-based approach could be compared to a peptide pictorial repre-
sentation. As all pictorial representations of molecules are simplified versions of
our current model of real structures (see Figure 3.1), analogously the descriptor-
based representation is a simplified, but holistic, mathematical representation of
the peptide. In both cases the peptide representation becomes clearer as much
as our point of interest is simplified and highlighted in some way.

Figure 3.2: Two different representation of the same protein. On the left
an atom-based representation displaying all the 1743 atoms, on the right a
simplified representation visualising the 120 amino acids using the Cα stick
coloured by residue type.

Due to the fact that the information content of a molecular descriptor depends
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on the kind of molecular representation and not only on the defined algorithm
for its calculation, a good choice for the protein representation is indispensable.
Considering a protein as a 3-dimensional molecular graph, the more immediate
way to represent a protein is an atom based representation. Using this repre-
sentation all the atoms belonging to a protein are considered. The atom-based
representation raises one big problem, complex descriptors cannot be calculated
on structures constituted of thousands of atoms. Another issue is that not nec-
essarily all the information brought by the atom-based representation is directly
connected to proteins’ properties.

Considering that the physico-chemical properties of the amino acids are re-
sponsible for the 3D structure and the functionality of the protein and all amino
acids share common structural features including an α-carbon to which an amino
group, a carboxyl group, and a variable side chain are bonded; an amino acid
based representation has been studied during this PhD thesis.

The amino acid based representation permits to reduce the complexity of the
studied structures, in fact the number of amino acids in a protein is more than ten
times lower than the number of atoms. A topological representation of a protein
using an atom-based approach is a complex molecular graph where atoms are
connected to the others by the molecular bonds, while the same protein using an
amino acid-based approach is just a sequence of amino acid types. Analogously
considering the 3-dimensional structure of the protein the atom-based approach
brought to a 3-dimensional graph with thousands of vertexes while the amino
acid based approach proposed in this PhD thesis considers only the Cα stick, the
two different representations are showed in Figure 3.2.

In order to be able to calculate 3-dimensional descriptors, amino acids have to
be characterised by three Cartesian coordinates. Being the α-carbon common to
every amino acid the Cartesian coordinates of that atom have been chosen as the
coordinates of the whole amino acid. In this way the amino acid structure can
be coded as a sequence of α-carbon, each of them described by some properties
of the corresponding isolated amino acid.

The amino acid properties chosen to characterise the isolated amino acids are
presented in the next sections.
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3.4 Amino acid characterisation

3.4.1 Introduction

The variety and specificity of protein 3-dimensional structures and biological
functions are due to the combination of the 20 different amino acids as specified
by the genetic code. The amino acids are the building blocks of proteins and
peptides each having different characteristics in terms of the shape, the volume,
and the chemical reactivity among others. Due to the fact that the molecular
descriptors described in chapter 4 chosen to characterise proteins and peptides
can be calculated in an unweighted way, that is considering every amino acid
equal to the others, or weighting every amino acid by a descriptive property
it has been necessary to chose some properties in order to characterise the 20
natural amino acids. One of the most comprehensive resource of amino acid
properties freely available on line is the amino acid index database (AAindex
http://www.genome.ad.jp/dbget/aaindex.html).

3.4.2 The amino acid index database (AAindex)

Amino acid index (AAindex) is a database of numerical indices representing var-
ious physicochemical, biochemical and statistical properties of amino acids and
pairs of amino acids [Nakai et al. (1986), Tomii and Kanehisa (1996), Kawashima
et al. (1999), Kawashima and Kanehisa (2000)]. AAindex database has been
made publicly available by the Japanese GenomeNet database service.

AAindex consists of three sections:

1. AAindex1 for the amino acid index of 20 numerical values;

2. AAindex2 for the amino acid mutation matrix;

3. AAindex3 for the statistical protein contact potentials.

All data are derived from published literature.

The first section, AAindex1, has been considered as a possible resource in
order to identify relevant properties of the 20 natural amino acids. This section
(AAindex ver. 9.1) contains a list of 544 amino acid indices. Each entry consists of
an accession number, a short description on the index, the reference information,
and the numerical values for the property of 20 amino acids. In some instances

http://www.genome.ad.jp/dbget/aaindex.html
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the values are not reported for all 20 amino acids. The properties collected in
the AAindex database have been divided in six major classes:

1. α and turn propensities;

2. β propensity;

3. amino acid composition;

4. hydrophobicity;

5. physicochemical properties;

6. other properties.

The first three classes can be considered as statistical properties of the amino
acids, while the fourth and the fifth classes include physicochemical properties.
Both, statistical and physicochemical properties have been considered in order to
build different weighting schemes for the twenty natural amino acids.

3.5 Choice of the characterising amino acid prop-

erties

3.5.1 Introduction

In order to be able to evaluate how different properties highlight different kind of
information, three weighting schemes have been defined. A weighting scheme is a
collection of properties of the 20 natural amino acids. Molecular descriptors have
been calculated using the weighting schemes separately. In the next sections the
proposed weighting schemes are presented.

The first two weighting schemes are made of five different properties each. The
first one collects five physicochemical properties while the second one is an array
of statistical properties of the 20 natural amino acids. Finally a third weighting
scheme is proposed. The last weighting scheme has been introduced calculating
three different WHIM global descriptors [Todeschini et al. (1994, 1995, 1996b,a),
Todeschini and Gramatica (1997c,a,b), Todeschini et al. (1997)] calculated on the
isolated structure of the 20 natural amino acids.
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3.5.2 Physicochemical weights

Depending on the polarity of the side chain, amino acids vary in their hydrophilic
or hydrophobic character. These properties are important in protein structure
and protein-protein interactions. The importance of the physical properties of
the side chains comes from the influence this has on the amino acid residues’
interactions with other structures, both within a single protein and between pro-
teins.

Table 3.1: Weighting scheme values for the 20 AAs. mw (molecular Weight,
scaled), p (polarity, scaled), hyb (hydrophobicity, scaled), ras (residue ac-
cessible surface area in folded protein, scaled) and hyl (hydrophilicity scale).

Amino acid 1-letter mw p hyb ras hyl
Ala A 0.651 0.973 0.614 0.57 0.78
Arg R 1.272 1.261 0.6 2.052 1.58
Asn N 0.965 1.393 0.063 1.437 1.2
Asp D 0.972 1.562 0.466 1.14 1.35
Cys C 0.885 0.661 1.072 0.433 0.55
Glu E 1.068 1.261 0 1.619 1.19
Gln Q 1.075 1.477 0.473 1.117 1.45
Gly G 0.548 1.081 0.071 0.525 0.68
His H 1.133 1.249 0.614 0.981 0.99
Ile I 0.958 0.625 2.222 0.41 0.47
Leu L 0.958 0.589 1.531 0.525 0.56
Lys K 1.068 1.357 1.157 2.212 1.1
Met M 1.09 0.685 1.178 0.707 0.66
Phe F 1.207 0.625 2.025 0.547 0.47
Pro P 0.841 0.961 1.954 1.14 0.69
Ser S 0.768 1.105 0.049 1.003 1
Thr T 0.87 1.033 0.049 1.072 1.05
Trp W 1.492 0.649 2.66 0.73 0.7
Tyr Y 1.324 0.745 1.884 1.368 1
Val V 0.856 0.709 1.319 0.41 0.51

The distribution of hydrophilic and hydrophobic amino acids determines the
tertiary structure of the protein, and their physical location on the outside struc-
ture of the proteins influences their quaternary structure. For example, soluble
proteins have surfaces rich with polar amino acids like serine and threonine, while
integral membrane proteins tend to have outer ring of hydrophobic amino acids
that anchors them into the lipid bilayer, and proteins anchored to the mem-
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brane have a hydrophobic end that locks into the membrane. Similarly, proteins
that have to bind to positively-charged molecules have surfaces rich with nega-
tively charged amino acids like glutamate and aspartate, while proteins binding
to negatively-charged molecules have surfaces rich with positively charged chains
like lysine and arginine.

Moreover it is generally accepted that in distantly related proteins, structure
is more conserved than sequence. Proteins that have diverged beyond detectable
sequence similarity still retain the architecture and topology of their ancestral
fold, in the known protein structures there are several families within which
the molecules maintain the same basic folding pattern over ranges of sequence
homology from near-identity down to below 20%. This means that structural
details are not maintained, it is function that is maintained.

In both closely and distantly related proteins the general response to mutation
is conformational change. Variations in conformation in families of homologous
proteins that retain a common function reveal how the structures accommodate
changes in amino acid sequence. Residues active in function are resistant to
mutation because changing them would interfere, explicitly and directly, with
function. It is the ability of protein structures to accommodate mutations in
non-functional residues that permits a large amount of apparently no adaptive
change to occur. Surface residues not involved in function are usually free to
mutate. Loops on the surface can often accommodate changes by local refolding,
provided that they are not involved directly in function This behaviour is due
to the fact that protein may well have similar structures and functions due to
physicochemical reasons.

Starting from the assumption that the physicochemical properties of the
amino acids are responsible for the 3D structure and the functionality of the
protein the first weighting scheme has been defined collecting five different physic-
ochemical properties from the amino acid index database.

The selected indices are:

1. molecular weight [Fasman (1976)] (FASG760101);

2. polarity [Grantham (1974)] (GRAR740102);

3. hydrophobicity [Jones (1975)] (JOND750101);

4. residue accessible surface area in folded protein [Chothia (1976)] (CHOC76010);

5. hydrophilicity scale [Kuhn et al. (1995)] (KUHL950101).
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Once selected, the five indices have been separately scaled in order to obtain
values with mean equal to one. Scaled index values are showed in Table 3.1.
Hydrophilicity has not been scaled due to the fact that this property is already
scaled.

The physicochemical weighting scheme has been used to calculate molecular
descriptors in order to perform a sensitivity analysis of the proposed methodology,
see chapter 7, they have been applied also on the cluster analysis of two different
protein folds in chapter 8 and in a regression analysis in order to predict two
biological properties in chapter 9.

3.5.3 Statistical weights

The structure and the sequence of many proteins is currently known. This infor-
mation can be used in order to define some statistical properties related to the
occurrence of the 20 natural amino acids in different kind of proteins or differ-
ent secondary structure elements (SSEs), namely, α helices, β strands, structural
turns, and loops [Kabsch and Sander (1983)].

Secondary structure conservation has been studied in structural alignments
of protein families and SSE substitution matrices have been created [Mizuguchi
and Blundell (2000)]. The conservation of SSEs has been also studied in some
specific protein families [Cygler et al. (1993)]; protein loops and their flanking
regions have been found to be conserved to the same extent in an analysis of a
large set of proteins [Liu et al. (2002)].

Protein structures can be divided into four major structural classes, accord-
ing to their secondary structure content and arrangement (SCOP [Murzin et al.
(1995), LoConte et al. (2002), Andreeva et al. (2004)]). There are two homoge-
neous classes and two heterogeneous classes. The homogenous classes consists of
structures containing mainly α helices (termed all alpha) or containing mainly
β strands (all beta). The two heterogeneous classes comprise both α helices
and β strands. The alpha/beta class consists of mainly parallel β sheets (beta-
alpha-beta units), and the alpha+beta class that consists of mainly antiparallel β
sheets (segregated α and β regions) [Murzin et al. (1995), LoConte et al. (2002),
Andreeva et al. (2004)]. Each class differs in its secondary structure content.

Proteins with similar sequences adopt similar structure [Chothia and Lesk
(1986), Doolittle (1981)]. However, similar structures can have less than 12%
sequence identity [Murzin et al. (1995), LoConte et al. (2002), Andreeva et al.
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Table 3.2: Statistical weighting scheme values for the 20 AAs. rf bs (relative
frequency in beta-sheet), rfo (relative frequency of occurrence), rm (relative
mutability), rf ah (relative frequency in alpha-helix) and rf rt (relative fre-
quency in reverse-turn).

Amino acid 1-letter rf bs rfo rm rf ah rf rt
Ala A 0.3059 0.8182 0.8152 0.8105 0.2566
Arg R 0.4118 0.4805 0.6304 0.4632 0.3224
Asn N 0.1412 0.3766 0.8587 0.4000 0.5855
Asp D 0.0941 0.4935 0.6630 0.5474 0.6711
Cys C 0.1176 0.0779 0.2065 0.6211 0.2697
Glu E 0.1882 0.3506 0.6413 0.7895 0.3816
Gln Q 0.1294 0.6234 0.5652 0.9684 0.4013
Gly G 0.3294 0.7792 0.2717 0.0421 0.8224
His H 0.5176 0.1169 0.7174 0.7368 0.1974
Ile I 0.9529 0.5065 0.8478 0.4737 0.0789
Leu L 0.4471 1.0000 0.3152 0.8211 0.1316
Lys K 0.1529 0.5844 0.5109 0.7474 0.3750
Met M 0.3882 0.1299 0.7391 1.0000 0.0000
Phe F 0.8000 0.3377 0.2826 0.5789 0.1250
Pro P 0.0000 0.4805 0.3587 0.0000 1.0000
Ser S 0.3647 0.7143 1.0000 0.3158 0.6184
Thr T 0.6706 0.5844 0.8913 0.3158 0.4211
Trp W 0.5882 0.0000 0.0000 0.4947 0.2368
Tyr Y 0.7176 0.2338 0.2717 0.2105 0.4342
Val V 1.0000 0.6753 0.7935 0.4105 0.0526

(2004), Holm and Sander (1996), Brenner et al. (1996), Rost (1997)]. Most amino
acids within a protein can thus be changed without affecting its structure, in-
cluding the secondary structure [Rost (1999)]. Previous experiments have shown
that both helices and strands can undergo numerous mutations and still keep their
secondary structure - either β-strand or α helix - and also maintain structural
stability [He et al. (2004), Heinz et al. (1994), Blaber et al. (1995)].

Due to these considerations the second weighting scheme studied during this
PhD thesis is not based upon physicochemical properties but collects five different
indices taken from the AAindex database classes: α and turn propensities, β
propensity and amino acid composition.

The weighting scheme proposed in this section has been called the statistical
weighting scheme, the five selected indices are:

1. relative frequency in beta-sheet [Prabhakaran (1990)] (PRAM900103);
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2. relative frequency of occurrence [Jones et al. (1992)] (JOND920101);

3. relative mutability [Jones et al. (1992)] (JOND920102);

4. relative frequency in alpha-helix [Prabhakaran (1990)] (PRAM900102);

5. relative frequency in reverse-turn [Prabhakaran (1990)] (PRAM900104).

Index values are showed in Table 3.2.

Due to the considerations that statistical weights strongly depend on pro-
tein related information a preliminary evaluation of this weighting scheme has
been performed on the cluster analysis of two different protein folds, a detailed
description of this application can be found in chapter 8.

3.5.4 WHIM weights

Aside from the twenty standard amino acids, there is a vast number of “non-
standard amino acids”. Two of these can be encoded in the genetic code, but
are rather rare in proteins. Selenocysteine is incorporated into some proteins at
a UGA codon, which is normally a stop codon [Driscoll and Copeland (2003)].
Pyrrolysine is used by some methanogenic archaea in enzymes that they use to
produce methane. It is coded for with the codon UAG [Krzycki (2005)].

Nonstandard amino acids often occur as intermediates in the metabolic path-
ways for standard amino acids - for example ornithine and citrulline occur in the
urea cycle, part of amino acid catabolism [Curis et al. (2005)].

Nonstandard amino acids are usually formed through modifications to stan-
dard amino acids. For example, homocysteine is formed through the trans-
sulfuration pathway or by the demethylation of methionine via the intermediate
metabolite S -adenosyl methionine [Brosnan and Brosnan (2006)], while dopamine
is synthesized from l-DOPA, and hydroxyproline is made by a post-translational
modification of proline [Kivirikko and Pihlajaniemi (1998)].

In order to be able to characterise not only the twenty natural amino acids but
also the nonstandard amino acids it has been necessary to identify a weighting
scheme not depending from the amino acid index database.

The adopted weighting scheme has been obtained calculating three different
global Weighted Holistic Invariant Molecular descriptors (WHIM) descriptors
[Todeschini et al. (1994, 1995, 1996b,a), Todeschini and Gramatica (1997c,a,b),
Todeschini et al. (1997), Todeschini and Gramatica (1998)] from the molecular
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Table 3.3: Weighting scheme values for the 20 AAs. Am (WHIM global di-
mension descriptor / weighted by atomic masses, scaled), Km (WHIM shape
descriptor / weighted by atomic masses). Dm (WHIM global density descrip-
tor / weighted by atomic masses).

Amino acid 1-letter Am Km Dm
Ala A 0.3634 0.4430 0.2330
Arg R 1.9266 0.7980 0.3130
Asn N 0.9274 0.4970 0.2960
Asp D 0.8575 0.4290 0.3700
Cys C 0.6683 0.4990 0.2530
Glu E 0.9970 0.5840 0.3810
Gln Q 1.1128 0.4040 0.3260
Gly G 0.2343 0.5420 0.3220
His H 1.0631 0.7590 0.2740
Ile I 0.9845 0.5820 0.2660
Leu L 1.1486 0.5210 0.3370
Lys K 1.5369 0.8120 0.3340
Met M 1.0385 0.4610 0.2940
Phe F 1.3731 0.5790 0.2710
Pro P 0.5536 0.4870 0.2910
Ser S 0.4656 0.3910 0.2810
Thr T 0.6918 0.4850 0.3070
Trp W 2.3415 0.6410 0.2970
Tyr Y 1.6385 0.6620 0.2840
Val V 0.7066 0.5100 0.2980

structure of the isolated amino acids. Three WHIM descriptors (Am - global di-
mension descriptor, Km - global shape descriptor, Dm - global density descriptor)
have been calculated using the classical atom based approach describing every
atoms belonging to the amino acids using the atomic mass. WHIM descriptors
are built in such a way as to capture relevant molecular 3D information regarding
molecular size, shape, symmetry and atom distribution with respect to invariant
reference frames.

They are divided into two main classes: directional WHIM descriptors and
global WHIM descriptors.

Directional WHIM descriptors are calculated as some univariate statistical in-
dices on the projections of the atoms along each individual principal axis, while
the global WHIMs are directly calculated as a combination of the former, thus si-
multaneously accounting for the variation of molecular properties along the three
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principal directions in the molecule. In this case, any information individually
related to each principal axis disappears and the description is related only to a
global view of the molecule.

Within the WHIM approach, a molecule is seen as a configuration of points
(the atoms) in the three-dimensional space defined by the Cartesian axes (x, y,
z ). In order to obtain a unique reference frame, principal axes of the molecule
are calculated. Then, projections of the atoms along each of the principal axes
are performed and their dispersion and distribution around the geometric centre
are evaluated.

Indeed, the algorithm consists of calculating the eigenvalues and eigenvec-
tors of a weighted covariance matrix of the centred Cartesian coordinates of a
molecule, obtained from different weighting schemes w for the atoms:

sqq′ =
∑nAT
i=1 wi(qi − q)(q′i − q′)∑nAT

i=1 wi
(3.2)

where sqq′ is the weighted covariance between the atomic coordinates q and
q′ (q, q′ = [x, y, z ]), nAT is the number of atoms, wi the atomic property (that
is the atomic mass in our case), qi and q′i represent the coordinates of the i -th
atom, and the corresponding average value.

A fundamental role in the WHIM descriptor calculation is played by the eigen-
values λ1, λ2 and λ3 of the weighted covariance matrix of the molecule atomic
coordinates. Each eigenvalue represents a dispersion measure (i.e., the weighted
variance) of the projected atoms along the considered principal axis, thus account-
ing for the molecular size along that principal direction. Relationships among the
eigenvalues are used to describe the molecular shape. For example, for an ideal
straight molecule both λ2 and λ3 are equal to zero and the global shape Kw is
equal to 1 (maximum value); for an ideal spherical molecule all three eigenvalues
are equal to 1/3 and Kw is 0.

Exploiting the new coordinates tk of the atoms along the principal axes, the
atom distribution and density around the molecule centre are evaluated by an
inverse function of the kurtosis k (η = 1/k). Low values of the kurtosis are
obtained when the atom projections assume opposite values with respect to the
centre. When an increasing number of atom projections are within the extreme
projections along a principal axis, the kurtosis value increases (i.e., kurtosis equal
to 1.8 for a uniform distribution of points, to 3.0 for a normal distribution). When
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the kurtosis value tends to infinity the corresponding η value tends to zero.
The three WHIM descriptors chosen to describe the amino acids are a global

dimension descriptor Am, calculated as:

Am = λ1 + λ2 + λ3 (3.3)

The second one (Km) is a global shape descriptor calculated as:

Km =
3
4

3∑
k=1

| λk∑3
k=1 λk

− 1
3
| (3.4)

The last one (Dm) is a global density descriptor calculated as:

Dm = η1 + η2 + η3 (3.5)

The values of Am, Km, Dm for the twenty natural amino acids is reported
in table Table 3.3. The WHIM weighting scheme has been applied to regression
analysis in chapter 9 in order to predict two biological properties.





chapter 4

Molecular Descriptors

“The molecular descriptor is the final result of a logic and mathematical procedure
which transforms chemical information encoded within a symbolic representation
of a molecule into a useful number or the result of some standardized experiment.”
[Todeschini and Consonni (2000)].

4.1 Introduction

Molecular descriptors play a fundamental role in chemistry, pharmaceutical sci-
ences, environmental protection policy, food sciences, health research and quality
control, being obtained when molecules are transformed into a molecular repre-
sentation allowing some mathematical treatment. Many molecular descriptors
have been proposed derived from different theories and approaches with the aim
of predicting biological and physicochemical properties of molecules [Todeschini
and Consonni (2000)].

The information content of a molecular descriptor depends on the kind of
molecular representation that is used and on the defined algorithm for its calcu-
lation (Figure 4.1). There are simple molecular descriptors derived by counting
some atom-types or structural fragments in the molecule, other derived from al-
gorithms applied to a topological representation (molecular graph) and usually
called topological or 2D-descriptors, and there are molecular descriptors derived
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Figure 4.1: Molecular descriptors are numbers able to extract small pieces
of chemical information from the different molecule representations

from a geometrical representation that are called geometrical or 3D-descriptors.

All the molecular descriptors must contain, to varying extents, chemical infor-
mation, must satisfy some basic invariant properties and general requirements,
and must be derived from well-established procedures which enable molecular
descriptors to be calculated for any set of molecules. It is obvious almost trivial
- that a single descriptor or a small number of descriptors cannot wholly repre-
sent the molecular complexity or model all the physico-chemical responses and
biological interactions. As a consequence, although we must get used to living
with approximate models, we have to keep in mind that “approximate”is not a
synonym of “useless”.

The field of molecular descriptors is strongly interdisciplinary and involves a
mass of different theories. For the definition of molecular descriptors, a knowledge
of algebra, graph theory, information theory, computational chemistry, theories
of organic reactivity and physical chemistry is usually required, although at dif-
ferent levels. For the use of the molecular descriptors, a knowledge of statistics,
chemometrics, and the principles of the QSAR/QSPR approaches is necessary in
addition to the specific knowledge of the problem (Figure 4.2).
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Figure 4.2: Key role of molecular descriptors in scientific research.

4.2 Constitutional descriptors

Constitutional descriptors are the most simple and commonly used descriptors,
reflecting the molecular composition of a compound without any information
about its molecular geometry.

The constitutional descriptors proposed have been introduced during this PhD
thesis. The number of molecular descriptors calculated depends on the number
of amino acid properties w used to weight the amino acids. The calculated
constitutional descriptors are:

� the number of amino acids belonging to the peptide or protein sequence
(one calculated descriptor for each sequence);

� the sum of the k-th property wk along the peptide sequence; i.e. the sum of
molecular weight, polarity, hydrophobicity, residue accessible surface area in
folded protein and hydrophilicity if we are considering the physico-chemical
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weighting scheme.

Wksum =
N∑
i=1

wki (4.1)

where k is the considered property, N is the number of amino acids belong-
ing to the considered sequence and wki is the considered property for the
i-th amino acid. The number of calculated descriptors for each sequence is
K, where K is the number of properties in the weighting scheme;

� the average sum of the k-th property wk along the peptide sequence; i.e. the
average sum of molecular weight, polarity, hydrophobicity, residue accessi-
ble surface area in folded protein and hydrophilicity if we are considering
the physico-chemical weighting scheme.

Wkasum =
∑N
i=1 wki
N

(4.2)

where k is the considered property, N is the number of amino acids belong-
ing to the considered sequence and wki is the considered property for the
i-th amino acid. The number of calculated descriptors for each sequence is
K, where K is the number of properties in the weighting scheme;

� the absolute frequency of the 20 different amino acids in each sequence
i.e. absolute frequency of alanines, arginine, asparagine, aspartic acid, cys-
teine, glutami acid, glutamine, glycine, histidine, isoleucine, leucine, lysine,
methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine
and valine (20 calculated descriptors for each sequence);

� the relative frequency of the 20 different amino acids in each sequence i.e.
relative frequency of alanines, arginine, asparagine, aspartic acid, cysteine,
glutami acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, me-
thionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and
valine (20 calculated descriptors for each sequence).

Considering the three weighting schemes proposed in chapter 3, 51 constitu-
tional descriptors have been calculated while using the physico-chemical weights
or the statistical weights, both weighting schemes are constituted by 5 different
amino acid properties. Considering the WHIM weighting scheme 47 constitu-
tional descriptors have been calculated.
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Although their simplicity there are several cases where constitutional descrip-
tors can be successfully used. In fact some peptide properties result from the
proportion of only one or a few amino acids and it is possible to model properties
from the number of the relevant amino acids in the protein [Siebert (2001, 2003)].
One of the situations where the proportion of amino acids of different types rather
than a precise sequence is thought to impact protein properties is in what are
called by food chemists functional properties. Various functional properties have
been listed by different authors and include solubility, wettability, gelation, fat
binding, water binding, emulsifying capacity, and foam, film, and glass formation
[Pomeranz (1991), Phillips et al. (1994), Damodaran (1995), Hettiarachchy and
Ziegler (1994), Fligner and Mangino (1991)]. A number of physicochemical prop-
erties (hydrophobicity, melting point, etc.) have been related to the proportions
of individual amino acids or particular classes of amino acids (e.g. acidic, basic,
hydrophilic, hydrophobic, aromatic, etc.) in a protein [Phillips et al. (1994)]. A
number of the functional properties have in turn been related to protein physic-
ochemical properties [Phillips et al. (1994), MacRitchie (1992)]. For example,
hydrophobicity, either in a domain or of an entire protein, is associated with
foaming, gel formation, and binding of nonpolar flavor compounds [Phillips et al.
(1994), Nakai et al. (1986)].

4.3 Topological descriptors

Topological descriptors, as the name suggests, consider the topology of a molecule.
These descriptors are numerical quantifiers of molecular topology [Todeschini and
Consonni (2000)] that are mathematically derived in a direct and unambiguous
manner from the structural graph of a molecule, usually an H-depleted molecu-
lar graph. Topological descriptors characterise structural features of the molecule
such as size, shape, symmetry, branching and cyclicity and can also encode chem-
ical information concerning atom type and bond multiplicity. Since topological
descriptors consider the molecule as a mathematical graph, a number of these de-
scriptors are simply various graph invariants or other functions of the molecular
graph.
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4.3.1 2D autocorrelation descriptors

2D autocorrelation descriptors are molecular descriptors which describe how a
considered property is distributed along a topological molecular structure.

This set includes:

� autocorrelations ATS (i.e. Autocorrelation of a Topological Structure) pro-
posed by Moreau and Broto [Broto et al. (1984a,b,c)];

� autocorrelations MATS calculated by the Moran coefficient [Moran (1950)];

� autocorrelations GATS calculated by the Geary coefficient [Geary (1954)].

Autocorrelation descriptors combine chemical information given by property val-
ues in specified molecule regions and structural information. These are based
on a conceptual dissection of the molecular structure and the application of an
autocorrelation function to molecular properties measured in different molecular
regions.

The Broto-Moreau autocorrelation ATSkw, w being the amino acid property
used to weight the peptide sequence and k the lag, is evaluated by considering
separately all the contributions of each different path length (lag) in the peptide
sequence, as collected in the topological distance matrix. In other words, the
total spatial autocorrelation at lag k ATSkw is obtained by summing all the
products wixwj of all the pairs of amino acid i and j, for which the topological
distance equals the lag as:

ATSkw =
nSK−1∑
i=1

nSK∑
j=i+1

wiwjδij (4.3)

where nSK is the number of amino acids belonging to the peptide and δij is
the Kronecker delta (δij = 1 if δij = k, zero otherwise, δij being the topological
distance between two considered amino acid).

The Moran autocorrelation MATSkw, w being the amino acid property used
to weight the peptide sequence and k the lag, is calculated by applying the Moran
coefficient to the amino acid sequence:

MATSkw =
1
∆

∑nSK
i=1

∑nSK
j=1 δij(wi − w)(wj − w)

1
nSK

∑nSK
i=1 (wi − w)2

(4.4)
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where wi is any amino acid property, w is its average value on the peptide,
nSK is the number of amino acids, δij is the Kronecker delta (δij = 1 if δij
= k, zero otherwise, δij being the topological distance between two considered
amino acids). ∆ is the sum of the Kronecker deltas, i.e. the number of amino
acid pairs at distance equal to k. Moran coefficient usually takes value in the
interval [-1,+1]. Positive spatial autocorrelation corresponds to positive values of
the coefficient whereas negative spatial autocorrelation produces negative values.

The Geary autocorrelation GATSkw, w being the atomic property used to
weight the peptide sequence and k the lag, is calculated by applying the Geary
coefficient to the amino acid sequence:

GATSkw =
1

2∆

∑nSK
i=1

∑nSK
j=1 δij(wi − wj)2

1
nSK−1

∑nSK
i=1 (wi − w)2

(4.5)

where wi is any amino acid property, w is its average value on the peptide,
nSK is the number of amino acids, δij is the Kronecker delta (δij = 1 if δij = k,
zero otherwise, δij being the topological distance between two considered amino
acids). ∆ is the sum of the Kronecker deltas, i.e. the number of amino acid pairs
at distance equal to k. Geary coefficient is a distance-type function varying from
zero to infinite. Strong spatial autocorrelation produces low values of this index;
moreover, positive autocorrelation translates in values between 0 and 1 whereas
negative autocorrelation produces values larger than 1; therefore, the reference
”no correlation” is coefficient value equal to 1.

To obtain uniform-length descriptors for a set of peptides, 2D-autocorrelation
descriptors are calculated using a lag from 1 to 8. Autocorrelations at lag 0 are
not provided being a simple sum of the squares of amino acid properties. Finally,
to avoid too large numbers, a logarithmic transformation of the Moreau-Broto
autocorrelation values (ATS) is performed as ln(1 + value).

4.4 Geometrical descriptors

Geometrical descriptors characterise the shape and extent of the molecule in
terms of its 3-dimensional Cartesian coordinates. As a result accurate coordi-
nates are required and so the structure must be geometry optimised before these
descriptors can be calculated [Todeschini and Gramatica (1998)].
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4.4.1 Weighted Holistic Invariant Molecular (WHIM) de-

scriptors

WHIM descriptors (Weighted Holistic Invariant Molecular descriptors) are geo-
metrical descriptors based on statistical indices calculated on the projections of
the atoms along principal axes [Todeschini et al. (1994, 1995, 1996b,a), Todeschini
and Gramatica (1997c,a,b), Todeschini et al. (1997), Todeschini and Gramatica
(1998)].

They are built in such a way as to capture relevant molecular 3D information
regarding molecular size, shape, symmetry and atom distribution with respect
to invariant reference frames. The algorithm consists in performing a Principal
Component Analysis (PCA) on the centred cartesian coordinates of a molecule by
using a weighted covariance matrix obtained from different weighting schemes for
the amino acids. Depending on the kind of weighting scheme, different covariance
matrices and different principal axes are obtained. Thus, the WHIM approach
can be viewed as a generalisation searching for the principal axes with respect to
a defined amino acid property, the weighting scheme.

For each weighting scheme, a set of statistical indices is calculated on the
atoms projected onto each principal component. The invariance to translation of
the calculated parameters is due to the centering of the atomic coordinates and
the invariance to rotation is due to the uniqueness of the PCA solution.

WHIM descriptors are divided into two main classes:

1. directional WHIM descriptors;

2. global WHIM descriptors.

Directional WHIM descriptors are calculated as some univariate statistical
indices on the projections of the amino acids along each individual principal axis.
Directional WHIM descriptors can be divided in four groups:

1. directional WHIM size indices;

2. directional WHIM shape indices;

3. directional WHIM simmetry indices;

4. directional WHIM density indices.

The first group of descriptors consists of the directional WHIM size indices defined
as the eigenvalues λ1, λ2 and λ3 of the weighted covariance matrix of the molecule
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amino acid α-carbon coordinates; they account for the molecular size along each
principal direction. The second group consists of the directional WHIM shape
descriptors ϑ1, ϑ2 and ϑ3, calculated as eigenvalues ratios and related to molecular
shape. The third group of descriptors consists of the directional WHIM symmetry
indices γ1, γ2 and γ3 calculated as mean information content [Klir and Folger
(1988)] on the symmetry along each component with respect to the centre of the
scores. Finally, the fourth group of descriptors consists of the directional WHIM
density indices which are related to the amino acids distribution and density
around the origin and along the principal axes.

The global WHIMs are directly calculated as a combination of the directional
WHIM descriptors, thus simultaneously accounting for the variation of molecular
properties along the three principal directions in the molecule. In this case,
any information individually related to each principal axis disappears and the
description is related only to a global view of the molecule.

WHIM descriptors are invariant to translation due to the centring of the
atomic coordinates and invariant to rotation due to the uniqueness of the principal
axes, thus resulting free from any prior alignment of molecules. In many cases,
size descriptors can play, in modelling, a significant role independently of the
measured directions, allowing simpler models. Thus, in view of the importance
of this quantity, a group of descriptors of the global dimension of a molecule is
considered in three different ways based on size, shape, symmetry and density
analogously to the directional WHIM descriptors.

4.4.2 GEometry, Topology, and Atom-Weights AssemblY

(GETAWAY) descriptors

The GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) descrip-
tors [Consonni and Todeschini (2001), Consonni et al. (2002a,b)] have been pro-
posed as chemical structure descriptors derived from a representation of molecular
structure by the Molecular Influence Matrix (MIM), denoted by H and defined
as the following:

H = M
(
MTM

)−1
MT (4.6)

where M is the molecular matrix consisting of the centred Cartesian coor-
dinates x, y, z of the molecule atoms or amino acids in a chosen conformation,
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and the superscript T refers to the transposed matrix. Atomic coordinates are
assumed to be calculated with respect to the geometrical centre of the molecule
in order to obtain translation invariance. The molecular information matrix is a
symmetric matrix and shows rotational invariance with respect to the molecule
coordinates, thus resulting independent of molecule alignment.

The diagonal elements hii of the molecular influence matrix, called leverages,
range from 0 to 1 and encode atomic information related to the “influence”of
each molecule atom in determining the whole shape of the molecule; in effect,
mantle atoms always have higher hii values than atoms near the molecule centre.
Moreover, the magnitude of the maximum leverage in a molecule depends on the
size and shape of the molecule. As derived from the geometry of the molecule,
leverage values are effectively sensitive to significant conformational changes and
to the bond lengths that account for amino acids types. Each off-diagonal element
hij represents the degree of accessibility of the j-th amino acid to interactions with
the i-th amino acid, or, in other words, the attitude of the two considered amino
acids to interact with each other. A negative sign for the off-diagonal elements
means that the two amino acids occupy opposite molecular regions with respect
to the centre, hence the degree of their mutual accessibility should be low.

The influence/distance matrix R has been derived from the molecular influ-
ence matrix H as the following:

[Rij ] = [

√
hiihjj

rij
]ij i 6= j (4.7)

where hii and hjj are the leverages of the two considered amino acids, and rij
is their distance. The diagonal elements of the matrix R are zero. The squared
root product of the leverages of two amino acids is divided by their distance in
order to make less significant contributions from pairs of amino acids far apart,
according to the basic idea that interactions between amino acids in the molecule
decreases as their distance increases.

A first set of the GETAWAY descriptors has been derived by applying some
traditional matrix operators and concepts of information theory both to the
molecular influence matrix H and the influence/distance matrix R. Most of
these descriptors are simply calculated only by the leverages used as the amino
acid weighting.

Another set of GETAWAY descriptors is based on the spatial autocorrelation
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formulas, weighting the molecule amino acids by properties w together with 3D
information encoded by the elements of the molecular influence matrix H and
influence/distance matrix R.





chapter 5

Chemometric Methods

Analytical chemical systems can be described by means of tables (matrices) in
which each row corresponds to a sample and each column to a variable describing
the system. This is the typical input for chemometric methods, which consider
all the variables at the same time and extract information in a global way. The
chemometric methods used during the applications of this thesis are collected
and briefly explained in the present chapter.

5.1 Data structure

Traditionally, in chemometrics, X denotes the data matrix, while the number of
rows (samples) and columns (variables) is usually indicated by n and p respec-
tively. Each entry of this matrix, xij , represents the value of the j -th variable
for the i -th sample. Other qualitative information regarding the samples can be
added to the data matrix, in order to make the results more readable, but only
the data matrix X is considered during the algorithms.

Depending on the applied chemometric method, some other information can
be needed in order to develop a multivariate model: when classification or re-
gression techniques are used, a response vector (or matrix) Y is used during the
calculations. This vector (matrix) contains the qualitative or quantitative re-
sponses to be modelled and has usually dimensions n times 1, i.e. each entry yi
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Figure 5.1: Typical representation of multivariate data. Where X is the
data matrix, the descriptor values, and Y the response matrix.

of the vector represents the value of the response for the i-th sample. If more
responses are considered in the same model, Y has dimensions n times r, where
r is the number of considered responses. In Figure 5.1 a schematic representation
of a multivariate data structure is shown.

In all the applications of this thesis, each row of X represent a molecule (the
sample), that can be a peptide or a protein represented by the molecular descrip-
tor values (the variables), and each column of X represent a single calculated
molecular descriptor, describing the molecules.

5.2 Principal Component Analysis

Principal Component Analysis (PCA) is the most common method used to dis-
play the structure of the multivariate data [Wold et al. (1987), Kvalheim (1987)].
PCA is a well-known chemometric technique, which projects the data in a reduced
hyperspace, defined by the principal components. These are linear combinations
of the original variables, with the first principal component having the largest
variance, the second principal component having the second-largest variance, and
so on. In this way it is possible to retain a number of components lower than
the number of original variables, i.e. it is possible to reduce the data dimension:
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the number of components to be retained can be chosen on the basis of different
parameters, linked to the variance explained by each principal component.

5.3 Sensitivity analysis

Sensitivity analysis is the study of how the variation in the output of a model
(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to
different sources of variation. A sensitivity analysis has been performed in chapter
7 in order to evaluate the capability of different descriptor blocks to discriminate
among different mutations on the same peptide sequence.

5.4 Variable selection techniques

Variable selection techniques can be used in order to improve chemometric mod-
els: these techniques are in fact able to retain and preserve only the variables,
which contain significant information for a specific task. Moreover, the increase
of dimensions and complexity of datasets and the decrease in time-consumption
in algorithms support approaches based on variable selection techniques.

5.4.1 All subset selection

The all subset selection method is the most simple variable selection method: this
technique searches all the possible models by using all the available combinations
of variables. Usually, an exhaustive search of all the possible solutions is not
feasible: in fact, if there is a total number of p variables, the number N of all the
possible combinations is:

N =
p!

(p− c)!c!
(5.1)

where c is the number of considered variables for each combination. This means
that considering 50 variables (p = 50) and selecting just 5 variables (c = 5), the
total number of combinations is N = 50!/((50-5)!5!) = 2118760, i.e. a huge
number of models should be computed. Consequently, this selection method is
applicable only with a low number of variables.
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5.4.2 Forward selection

Forward Variable Selection is a simple selection technique, which starts with no
variables and adds one variable at a time to the chemometric model: the inclusion
of a variable is based on the optimisation of a chosen parameter [Jennrich (1977)]
that depends on the selection task, e.g. a classification quality parameter, such
as the number of errors, or a regression parameter, such as the response residuals.

Forward Selection can depend on the first selected variables, since all the oth-
ers are added to the model when these variables are still present and consequently
the new variables can just contribute to solve marginal modelling fittings. On
the other hand this method is usually faster and less time-consuming than other
classification techniques, such as Genetic Algorithms, which explore in a more
complete way the available information and searches for the best solution with an
higher number of possibilities, but, as a consequence, are more time-consuming.

5.4.3 Genetic Algorithms

Genetic Algorithms (GAs) select subsets of variables that maximise the predictive
power of multivariate models and perform this selection by considering popula-
tions of models generated with an evolution process and optimised according to
an objective function [Goldberg (1989), Leardi et al. (1992), Leardi (1994, 2001),
Todeschini et al. (2003)].

Genetic algorithms have been created as an optimisation strategy to be used
especially when complex response surfaces do not allow the use of better-known
methods (simplex, experimental design techniques, etc.). These algorithms, con-
veniently modified, can also be a valuable tool in solving the feature selection
problem. The subsets of variables selected by genetic algorithms are generally
more efficient than those obtained by classical methods of feature selection, since
they can produce a better result by using a lower number of features. This is
due to the fact that the performance of the model is sensitive to the choice of the
features used to construct the model.

Exhaustive evaluation of possible feature subsets is usually unfeasible in prac-
tise because of the large amount of computational effort required, like in the
molecular descriptor approach, due to the availability of hundreds of features/descriptors
that can be calculated from a single protein. Genetic algorithms, which belong
to a class of randomised heuristic search techniques, offer an attractive approach
to obtain near-optimal solutions to such optimisation problems.
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In the following, the studied genetic algorithm strategy for variable subset
selection is presented. The feature selection is based on the evolution of a popu-
lation of models, i.e. a set of ranked models according to some objective function.
In genetic algorithm terminology, each population individual is called chromo-
some and is a binary vector , where each position (a gene) corresponds to a
variable (1 if included in the model, 0 otherwise). Each chromosome represents
a model given by a subset of variables. Once the objective function to optimise
is defined the genetic algorithm evolution starts, based on three main steps:

1. Random initialisation of the population. The model population is
built initially by random models with a number of variables between 1 and
L, where L is the maximum number of variables allowed in a model. The
value of the selected objective function of each model is calculated in a
process called evaluation. The models are then ordered with respect to the
selected objective function - model quality - (the best model is in first place
in the population, the worst at position P, where P is the model population
size);

2. Crossover. From the actual population, pairs of models are selected (ran-
domly or with a probability function of their quality). Then, from each pair
of selected models (parents), a new model is generated, preserving the com-
mon characteristics of the parents (i.e. variables excluded in both models
remain excluded, variables included in both models remain included) and
mixing the opposite characteristics according to the crossover probability.
If the generated son coincides with one of the individuals already present
in the actual population, it is rejected; otherwise, it is evaluated. If the
objective function value is better than the worst value in the population,
the model is included in the population, in the place corresponding to its
rank; otherwise, it is no longer considered. This procedure is repeated for
several pairs.

3. Mutation. After a number of crossover iterations, the population pro-
ceeds through the mutation process. This means that for each individual
of the population every gene is randomly changed into its opposite or left
unchanged. Mutated individuals are evaluated and included in the popu-
lation if their quality is acceptable. This process is controlled by mutation
probability which is commonly set at low values, thus allowing only a few
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mutations and new individuals not too far away from the generating indi-
vidual.

Unlike the classical genetic algorithm, in the studied approach [Todeschini
et al. (2003), Mob (2007)] crossover and mutation steps are kept disjoint. Popu-
lation crossover and mutation are alternatively repeated until a stop condition is
encountered (e.g., a user-defined maximum number of iterations) or the process
is ended arbitrarily.

An important characteristic of the GA-VSS method is that it provides not a
single model but a population of acceptable models; this characteristic, sometimes
considered a disadvantage, makes the evaluation of variable relationships with
response from different points of view possible. The studied approach extends
the genetic strategy based on the evolution of a single population of models
to a more complex genetic strategy based on the evolution of more than one
population. These populations evolve independently from each other and, after
a number of iterations, they can be combined according to different criteria, thus
obtaining a new population with different evolutionary capabilities.

Models can be optimised by different statistical parameters to measure their
quality. Moreover, the genetic parameters that control the population evolution
can be changed during the model searching. Mutation and crossover probabilities
are tailored by this strategy. Finally, once the best models from one or more
optimised populations are obtained, bootstrap and y-scrambling techniques can
be used for further validation.

5.5 Model validation

Since the main aim of chemometric models (both regression and classification
models) is the application of the models to unknown samples, great attention has
been focused on their predictive capabilities.

In fact, if we consider a simple regression model, it is demonstrated that the
fitting performances of the model always increase if new variable are added, even
if these new variables are random variables or do not contain useful information.
On the other hand, the predictive performances of the model increase only when
informative variables are added to the model, otherwise they decrease. This
simple case clarifies why the prediction capabilities of a model have to be always
tested. All the models carried out in this thesis have been validated using different
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procedures, depending on the case in analysis.

5.5.1 Leave-one-out (LOO) and leave-more-out (LMO)

The leave-one-out (LOO) procedure is one of the most used validation tech-
niques: it removes each sample from the data set, one at a time, then the model
is rebuilt and the response of the removed sample is predicted by using the ob-
tained model. All the samples are sequentially removed and predicted. Finally
the mean of the predicted responses obtained on all the samples is calculated.
Since LOO can provide over optimistic results [Golbraikh and Tropsha (2002)],
also a more robust validation technique (leave-more-out, LMO) has been applied
[Burden et al. (1997), Baumann and Stiefl (2004)]. In the LMO procedure, a
percentage s of samples is randomly removed from the data set; then, the model
is rebuilt without these objects and the responses of the removed sample are pre-
dicted by the obtained model. This procedure is repeated r times, always with
a random selection of s samples. Finally the mean of the predicted responses
is calculated. As explained, the LMO procedure is more robust then LOO, but
also more time-consuming. Furthermore, LOO gives always the same result, i.e.
it is perfectly reproducible, while LMO is based on a initial random selection
of the samples to be predicted and can provide different results each time it is
applied. The advantages (robustness) and disadvantages (time-consuming, not
perfectly reproducible) of LMO can be avoided by means of another validation
technique: the samples are divided in different groups (cross-validation groups)
and one group at a time is removed from the training set, the model is rebuilt
without the left out objects and the responses of the removed sample are pre-
dicted. This procedure is repeated for each cross-validation group, and finally
the mean of the predicted responses is calculated.

5.5.2 Bootstrap technique

Bootstrapping is a modern, computer-intensive, general purpose approach to sta-
tistical inference, falling within a broader class of resampling methods. By boot-
strap validation technique [Efron (1979, 1982, 1987)], the original size of the data
set (n) is preserved for the training set, by the selection of n objects with rep-
etition; in this way the training set usually consists of repeated objects and the
evaluation set of the objects left out. The model is calculated on the training
set and responses are predicted on the evaluation set. All the squared differ-
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ences between the true response and the predicted response of the objects of the
evaluation set are collected in PRESS (predictive residual sum of squares). This
procedure of building training sets and evaluation sets is repeated thousands of
time, PRESS are summed and the average predictive power is calculated.

5.5.3 Y-scrambling

Y-scrambling validation technique is adopted to check models with chance cor-
relation, i.e. models where the independent variables are randomly correlated
to the response variables. The test is performed by calculating the quality of
the model (usually R2 or, better, Q2) randomly modifying the sequence of the
response vector y, i.e. by assigning to each object a response randomly selected
from the true responses [Lindgren et al. (1996), Eriksson et al. (1997)]. If the
original model has no chance correlation, there is a significant difference in the
quality of the original model and that associated with a model obtained with ran-
dom responses. For a model to be valid, the desirable intercept limits should be
R2<0.3 and Q2<0.05. If both limits are exceeded, the model should be treated
with caution. The procedure is repeated several hundreds of times.
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chapter 6

List of applications

Introduction

In the second part of this thesis three different applications of the studied method-
ology are presented.

The first application described in chapter 7 is a sensitivity analysis performed
on an artificial data set. A portion of thirteen amino acids is extracted from
the streptavidin protein. On this sequence amino acids having different position
have been mutated obtaining different data sets of the mutated sequence corre-
sponding to the position of the mutated amino acid. This artificial data set have
been used in order to evaluate the capability of two different descriptor blocks,
constitutional and auto-correlation descriptors, to be able to discriminate among
different mutated amino acids.

The second application described in chapter 8 has been studied in order to
evaluate the capability of the proposed approach to be able to discriminate among
proteins belonging to the same fold. Two protein folds are collected from the
SCOP database [Murzin et al. (1995), LoConte et al. (2002), Andreeva et al.
(2004)] and then all the four descriptor blocks proposed are calculated and prin-
cipal component analysis were performed. This application was used also to study
the capability of different weighting scheme to be able to highlight different kind
of information depending also on the calculated molecular descriptors.
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The third application described in chapter 9 is the conclusive test performed
in order to get the evidence that this methodology is valuable. A peptide data
set collected from the literature [Andersson et al. (1998)] has been analysed. Two
biological responses have been modelled using the constitutional and the auto-
correlation descriptors and the models have been obtained by the genetic algo-
rithm variable subset selection technique explained in section 5.4. The obtained
models have been validated by bootstrap and y-scrambling analysis described in
section 5.5.

Finally in chapter 10 a web-based application developed in order to get pub-
licly available the algorithms described in this PhD thesis is described. In this
final chapter some screen shots of this application and the instructions in order
to use it are presented.
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Sensitivity Analysis of the

proposed methodology: the

Streptavidin Dataset

7.1 Introduction

The first application described in this part of the thesis has been performed
in order to evaluate the capability of the molecular descriptor based approach
described in the theory (see part I) to be able to characterise and discriminate
among different peptide sequences.

Starting from a protein sequence constituted of 120 amino acids and 1743
atoms, the streptavidin protein (see Figure 7.1), a short sequence of 13 amino
acids has been extracted. On this sequence a series of mutations have been per-
formed. Consequently different data sets have been obtained, each data set corre-
sponding to different mutations; on these data sets principal component analysis
have been performed in order to evaluate how two different descriptor blocks
are able to discriminate among the different mutations. Only the 2-dimensional
structure of these peptide sequences has been used, thus only the constitutional
and the autocorrelation descriptors have been calculated.

In the next sections the diverse capabilities of these two different descriptor
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blocks to discriminate among different mutations will be shown.

Figure 7.1: Schematic representation of the streptavidin protein. On the left
schematic representation of the tertiary structure of the whole protein. In the
middle schematic representation of the whole protein coloured by residue type.
On the right schematic representation of the amino acid sequence extracted
by the streptavidin protein (amino acids from 111 to 123) coloured by residue
type.

7.2 Streptavidin dataset

Streptavidin is a 60,000 dalton tetrameric protein purified from the bacterium
Streptomyces avidinii. It finds wide use in molecular biology through its extraor-
dinarily strong affinity for the vitamin biotin; the dissociation constant (Kd) of
the biotin-streptavidin complex is on the order of ∼ 10-15 mol/L, ranking among
one of the strongest known non-covalent interactions [Wilchek and Bayer (1989),
Miyamoto and Kollman (1993), Zimmermann and Cox (1994)].

As introduced in the first section of this chapter a sequence of 13 amino acids
has been extracted from the streptavidin protein. The sequence extracted comes
from the amino acid in position 111 to the amino acid in position 123. The
streptavidin protein and the extracted sequence is shown in Figure 7.1. Once
extracted this sequence has been virtually mutated, this means that the amino
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Table 7.1: The peptide sequence of 13 amino acids extracted from the strep-
tavidin protein.

1 2 3 4 5 6 7 8 9 10 11 12 13
T S G T T E A N A W K S T

acid in position 2 of the extracted sequence (a serine - S) has been changed in
order to obtain 19 more sequences. Each of them containing in position 2 one of
the others natural amino acids as represented in Table 7.2.

Table 7.2: The 20 peptide sequences of 13 amino acids extracted from the
streptavidin protein with a single mutation in position 2. Amino acid serine
(S) in the original sequence (first row in the table) has been substituted with
all the other 19 natural amino acids in an iterative way.

1 2 3 4 5 6 7 8 9 10 11 12 13
T S G T T E A N A W K S T
T A G T T E A N A W K S T
T C G T T E A N A W K S T
T D G T T E A N A W K S T
T E G T T E A N A W K S T
T F G T T E A N A W K S T
T G G T T E A N A W K S T
T H G T T E A N A W K S T
T I G T T E A N A W K S T
T K G T T E A N A W K S T
T L G T T E A N A W K S T
T M G T T E A N A W K S T
T N G T T E A N A W K S T
T P G T T E A N A W K S T
T Q G T T E A N A W K S T
T R G T T E A N A W K S T
T T G T T E A N A W K S T
T V G T T E A N A W K S T
T W G T T E A N A W K S T
T Y G T T E A N A W K S T

This data set has been used as starting point in order to build four new
data sets each of them collecting 400 peptide sequences. The four new data sets
has been obtained mutating in position 5, 7, 9 and 11 the starting data set of
twenty sequences. Each new data set has been built considering each sequence
of the starting data set and mutating a single amino acid in a single position.



58
Chapter 7. Sensitivity Analysis of the proposed methodology: the Streptavidin

Dataset

In this way from every starting sequence 20 new mutated sequences have been
obtained. Considering that the starting data set is constituted by 20 sequences
every mutated data set is constituted by 400 different amino acid sequences.

Figure 7.2: Illustration of the different compared data sets using the mutated
amino acids. On the left the mutation in position 7, where the original amino
acid is an alanine, on the right the compared mutations. In position 9 the
amino acid in the original sequence is an alanine (label 1), in position 5 the
amino acid in the original sequence is a threonine (label 2) and finally in
position 11 the amino acid in the original sequence is a lysine (label 3).

7.3 Results and Discussions

Once the four data sets have been constituted the constitutional and the auto-
correlation molecular descriptor blocks have been calculated on all the four data
sets of 400 peptide sequences.

The molecular descriptors have been calculated using the physicochemical
weighting scheme described in section 3.5.2. This weighting scheme is constituted
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of five different physicochemical properties collected from the amino acid index
database. The selected indices are:

1. molecular weight [Fasman (1976)] (FASG760101);

2. polarity [Grantham (1974)] (GRAR740102);

3. hydrophobicity [Jones (1975)] (JOND750101);

4. residue accessible surface area in folded protein [Chothia (1976)] (CHOC76010);

5. hydrophilicity scale [Kuhn et al. (1995)] (KUHL950101).

Figure 7.3: Loading plot of the first two principal components calculated on
the constitutional descriptors for the data sets with mutation in position 7 and
9. The global descriptorsWk sum and Wk asum, where k is the considered
weight, are highlighted.

Once computed the descriptor values a sensitivity analysis has been performed
in order to evaluate how the calculated molecular descriptors are able to discrim-
inate among the four different mutated data sets. The data set collecting all the
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400 sequences with mutation in position 7 has been compared with the other
three data sets, describing the mutation in position 5, 9 and 11.

Figure 7.4: Score plot of the first two principal components for the data
sets with mutation in position 7 (empty triangle) and 9 (filled circles). PCA
performed on constitutional descriptors.

In order to evaluate if and how different molecular descriptor blocks are able
to discriminate among different mutations the four data sets have been compared.
Iteratively the data set describing the mutation in position 7 has been compared
to the other three data sets. The descriptor values calculated for the mutation in
position 7 have been added to the descriptor values of the other three data sets
obtaining four data sets, each of one describing two different mutations, compris-
ing 800 peptide sequences each. On these data sets principal component analysis
have been performed, results are showed in Figure 7.4, Figure 7.5, Figure 7.6,
Figure 7.7, Figure 7.8 and Figure 7.9.

In Figure 7.3 is displayed the loading plot of the constitutional descriptors for
the first two principal components for the data set with peptide sequences mu-
tated in position 7 and 5. The explained variance (EV) of the first component is
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Figure 7.5: Score plot of the first two principal components for the data
sets with mutation in position 7 (empty triangle) and 9 (filled circles). PCA
performed on autocorrelation descriptors.

17% while the explained variance of the second principal component is 10%. The
molecular descriptors with higher loadings in the first two principal components
are the descriptors correlated to the global dimension of the peptide sequences.
These descriptors are the sum and the average sum of the different physicochem-
ical properties used to characterise the amino acids, respectively the symbols of
these descriptors are Wk sum and Wk asum, where k is the considered weight
(for a complete list of descriptor symbols and descriptions see chapter III).

Accordingly to the loading plot showed in Figure 7.3 peptide sequences with
high values for Wmw sum, e.g. peptide sequences with high molecular weight,
will have high values for the second principal component; peptide sequences with
high values for Wras sum, Whyl sum and Wp sum will have high values for the
first principal component and peptide sequences with low values for Whyl sum
will have low values on the first principal component.

Principal component analysis of the mutation in position 7 and 9 is showed
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in Figure 7.4 and Figure 7.5. Peptide sequences mutated in position 7 are rep-
resented in the figure with empty triangle while peptide sequences mutated in
position 5 are represented by filled circle. Principal component analysis on the
constitutional descriptors (Figure 7.4) show that this descriptor block is not able
to discriminate among mutations in position 9 and mutations in position 7. This
result is due to the fact that in the original sequences both in position 9 and in
position 7 there is an alanine. Constitutional descriptors, avoiding the informa-
tion related to the topology and the connectivity, are not able to discriminate
among mutation if the final composition of the peptide sequences is the same.
Instead principal component analysis on the autocorrelation descriptors (Fig-
ure 7.5) show that introducing the information about the connectivity and the
relationships among amino acids belonging to the same peptide sequences it is
possible to discriminate among different mutations.

Figure 7.6: Score plot of the first two principal components for the data
sets with mutation in position 7 (empty triangle) and 5 (filled circles). PCA
performed on constitutional descriptors.

In Figure 7.6 and Figure 7.7 principal component analysis performed on the
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Figure 7.7: Score plot of the first two principal components for the data
sets with mutation in position 7 (empty triangle) and 5 (filled circles). PCA
performed on autocorrelation descriptors.

data set collecting the mutations occurred in position 7 and in position 5 is
showed. The principal component analysis performed on the constitutional de-
scriptors (Figure 7.6) show that this descriptor block is quite able to discriminate
between mutation in position 7 and mutation in position 5. This change of be-
haviour for the constitutional descriptors is due to the fact that in the original
sequences in position 7 there is an alanine while in position 5 there is a threonine.
These two amino acids have different physicochemical properties and constitu-
tional descriptors are able to highlight these differences. Analogously, but in a
clearer way, also the autocorrelation descriptors are able to discriminate between
this two mutations (Figure 7.7).

Finally in Figure 7.8 and Figure 7.9 principal component analysis performed
on the data set collecting the mutations occurred in position 7 and in position
11 is presented. In the original sequences in position 7 there is an alanine while
in position 11 there is a lysine, these two amino acids have very different physic-
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Figure 7.8: Score plot of the first two principal components for the data
sets with mutation in position 7 (empty triangle) and 11 (filled circles). PCA
performed on constitutional descriptors.

ochemical properties. These differences are highlighted both by the principal
component analysis performed on the constitutional (Figure 7.8) and on the au-
tocorrelation descriptors (Figure 7.9).

7.4 Conclusions

The preliminary analysis described in this chapter show that the molecular de-
scriptor based approach presented in this PhD thesis is able to discriminate
among different peptide sequences. Constitutional and autocorrelation descrip-
tor blocks are able to discriminate among homogeneous data sets where a single
mutation position is changed.

The capability of the two considered descriptor blocks to discriminate among
different mutations are diverse. Autocorrelation descriptors are able to discrim-
inate among different mutation position also when the final composition of the
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Figure 7.9: Score plot of the first two principal components for the data
sets with mutation in position 7 (empty triangle) and 11 (filled circles). PCA
performed on autocorrelation descriptors.

two data sets is the same, like for mutation in 7 and 9. Anyway constitutional de-
scriptors show results similar to autocorrelation descriptors when the differences
among the final composition of the mutated amino acid sequences increases.

In the next chapter also the 3-dimensional descriptors have been used and the
capability of different weighting scheme to highlight different sources of informa-
tion is described.





chapter 8

Cluster analysis of two different

protein folds

8.1 Introduction

In this chapter has been analysed the capability of the proposed molecular de-
scriptor based approach to discriminate among superfamilies and families in two
selected folds according to the Structural Classification of Proteins (SCOP) rep-
resentation [Murzin et al. (1995), LoConte et al. (2002), Andreeva et al. (2004)].

This investigation has been performed using the Principal Component Analy-
sis - PCA (see section 5.2). Four descriptor blocks have been calculated for both
protein folds using two different weighting schemes, physicochemical and statis-
tical weighting schemes. Principal component analysis has been applied in order
to evaluate the capabilities of the two different weighting schemes to highlight
different kind of information.

8.2 The SCOP database

Structural Classification of Proteins (SCOP) [Murzin et al. (1995), LoConte et al.
(2002), Andreeva et al. (2004)] is the most cited resource for classifying proteins,
it provides a detailed and comprehensive description of the structural and evo-
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Figure 8.1: Schematic representation of two different protein folds. On the
left d1mmq protein belonging to zincin-like fold (D.92), on the right d3nul
protein belonging to profilin-like fold (D.110).

lutionary relationships of proteins whose three-dimensional structures have been
determined.

The SCOP database is organized on a number of hierarchical levels that em-
body the evolutionary and structural relationships, these levels are: family, super-
family, fold and class. Families contain protein domains that share a clear com-
mon evolutionary origin, as evidenced by sequence identity, of 30% and greater, or
extremely similar structure and function. Superfamilies consist of families whose
proteins have low sequence identities but whose structures and, in many cases,
functional features suggest that a common evolutionary origin is probable. Folds
consist of one or more superfamilies that have same major secondary structures
in same arrangement with the same topological connections.

The different folds are grouped into five structural classes on the basis of the
secondary structures of which they are composed. All alpha (for proteins whose
structure is essentially formed by α-helices). All beta (for those whose structure
is essentially formed by β-sheets). Alpha and beta (for proteins with α-helices
and β-strands that are largely interspersed). Alpha plus beta (for those in which
α-helices and β-strands are largely segregated) and multi-domain (for those with
domains of different fold and for which no homologues are known at present).
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8.3 Choice of two different protein folds

Proteins to be investigated have been searched in the SCOP database [Murzin
et al. (1995), LoConte et al. (2002), Andreeva et al. (2004)] from which have
been excluded the domains with sequential similarity higher than 95% in order to
avoid the use of not meaningful folds. In this reduced database some constraints
to reduce the number of useful folds have been introduced.

Selected folds have been chosen from folds belonging to domains with a mix-
ture of helix and sheet structures, α/β (alpha and beta), and α + β (alpha plus
beta). The α/β domains principally consist of a single β-sheet, with α-helices
joining the C-terminus of one strand to the N-terminus of the next. Domains
that have the α and β units largely separated in sequence fall into the α + β

class.
Other constraints applied to the fold selection are:

1. Superfamily: between 2 and 7;

2. Family: between 6 and 18;

3. Domain: at least 30 for the selected fold;

4. Family/Superfamily: higher than 2.

After this preliminary selection carried out to obtain folds with a representa-
tive number of families and superfamilies, two different folds have been selected
(see Figure 8.1):

1. Zincin-like fold (D.92);

2. Profilin-like fold (D.110).

The first one (D.92) has been selected due to its representative composition in
superfamilies and families. It is constituted by 2 superfamilies (metalloproteases
and beta-N-acetylhexosaminidase), the first one clustered in 15 and the second
one in 2 families. The Zincin-like fold comprises 56 domains, it belongs to α + β

class and contains mixed β-sheet with connection over free side of the sheet.
Zincin-like fold proteins are mainly represented by the zinc metalloprotease

enzyme family, a very well studied enzyme class involved in very diverse processes
ranging from embryonic development to cancer and classified into distinct fami-
lies exhibiting shared zinc binding motifs [Hooper (1994)]. One such family are
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the matrix metalloproteases (MMPs). Misregulation of MMPs is believed to con-
tribute to pathological conditions such as cancer [Kleiner and Stetler-Stevenson
(1999)], angiogenesis [Lohmander et al. (1993)], osteoarthritis, rheumatoid arthri-
tis [Murphy and Hembry (1992)], remodelling in Alzheimer disease [Peress et al.
(1995)] and pulmonary emphysema [Skiles et al. (2001, 2004)].

The Profilin-like fold has been selected due to its environmental significance;
in effect, the PAS (Per-ARNT-Sim) superfamily of proteins belongs to this fold,
which is a widely studied collection of single- and multidomain proteins involved
in inducing and regulating some of the basic adaptive mechanisms of the cell
[Taylor and Zhulin (1999), Gu et al. (2000), Repik et al. (2000), Kewley et al.
(2004), Pandini and Bonati (2005)]. This fold is constituted by 7 superfamilies,
16 families and 36 domains. Also profilin-like fold belongs to α + β class that
comprises proteins with mainly antiparallel beta sheets (segregated alpha and
beta regions). Its structure core is constituted by two α-helices and five stranded
anti parallel sheets.

8.4 Results and Discussions

Two analyses have been separately performed, one on the D.92 data set and
the other on the D.110 data set. The former consists of 56 domains, the latter
consists of 36; both data sets have been described by four molecular descrip-
tor blocks. The four calculated descriptor blocks have been weighted using two
different weighting schemes: the physicochemical and the statistical weighting
scheme. The properties used to characterise the amino acids for the physico-
chemical weighting schemes are:

1. molecular weight [Fasman (1976)] (FASG760101);

2. polarity [Grantham (1974)] (GRAR740102);

3. hydrophobicity [Jones (1975)] (JOND750101);

4. residue accessible surface area in folded protein [Chothia (1976)] (CHOC76010);

5. hydrophilicity scale [Kuhn et al. (1995)] (KUHL950101).

While the properties considered in the statistical weighting scheme are:

1. relative frequency in beta-sheet [Prabhakaran (1990)] (PRAM900103);
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2. relative frequency of occurrence [Jones et al. (1992)] (JOND920101);

3. relative mutability [Jones et al. (1992)] (JOND920102)

4. relative frequency in alpha-helix [Prabhakaran (1990)] (PRAM900102)

5. relative frequency in reverse-turn [Prabhakaran (1990)] (PRAM900104).

These two descriptor schemes are described in section 3.5.

Figure 8.2: Score plot of the first two principal components for the data
set D.92. PCA performed on constitutional descriptors weighted by physcico-
chemical weights. Metalloproteases superfamily is represented by filled circle,
beta-N-acetylhexosaminidase is represented by empty triangles. Families clus-
tered correctly are highlighted by ovals.

Both protein folds have been analysed using the four descriptor blocks in-
dependently, every fold has been analysed considering constitutional descriptors
and their principal components, 2D autocorrelation descriptors and their princi-
pal components, then WHIM descriptors and their PCs and finally GETAWAY
descriptors and their PCs.

Both considered weighting schemes collects five different properties, so the
number of calculated molecular descriptors is equal for the two weighting schemes.
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Figure 8.3: Score plot of the first two principal components for the data set
D.92. PCA performed on constitutional descriptors weighted by statistical
weights. Metalloproteases superfamily is represented by filled circle, beta-N-
acetylhexosaminidase is represented by empty triangles. Families clustered
correctly are highlighted by ovals.

Constitutional descriptor block consists of 51 descriptors, 2D autocorrelation de-
scriptors consist of 120 molecular descriptors, WHIM block of 99 descriptors and
the GETAWAY block of 235 descriptors. After the calculation all the constant
descriptors have been excluded; all the descriptors with a pair correlation, with
another descriptor, higher than 0.99 have been also excluded.

The obtained score plots allow an introductory view of the ability of the
selected molecular descriptors to adequately represent the clusters in which the
different domains are grouped. For both data sets the constitutional and the
GETAWAY descriptors are deeply analysed in order to evaluate the capability of
the two different weighting schemes to highlight different kind of information.

8.4.1 Zincin-like fold (D.92)

Zincin-like fold (D.92) consists of 2 superfamilies, 17 families and 56 domains.
The D.92 superfamilies are the metalloproteases superfamily that collects 2 fam-
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Figure 8.4: Score plot of the first two principal components for the data
set D.92. PCA performed on GETAWAY descriptors weighted by physcico-
chemical weights. Metalloproteases superfamily is represented by filled circle,
beta-N-acetylhexosaminidase is represented by empty triangles. Families clus-
tered correctly are highlighted by ovals.

ilies, one with 2 and one with 3 domains; and the beta-N-acetylhexosaminidase
superfamily that collects 15 families, 7 of them described by only one domain.
The metalloproteases superfamily collects domains with a number of amino acids
between 131 and 147 while the beta-N-acetylhexosaminidase superfamily com-
prise domains with a number of amino acids between 132 and 696.

In Figure 8.2 is represented the scatter plot of the first two principal compo-
nents calculated on the constitutional descriptors weighted by the physicochem-
ical properties. The first two PCs explain more than 55% of the total variance
and more than 90% of variance is explained by the first 10 PCs. Analogously
the scatter plot of the first two principal components calculated on the constitu-
tional descriptors weighted by the statistical properties is shown in Figure 8.3.
The explained variance of the first two PCs is 44% and the first 10 PCs explain
more than 90% of the total variance of the data set.

All the descriptors of these two blocks have the same values, except for the
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Figure 8.5: Score plot of the first two principal components for the data
set D.92. PCA performed on GETAWAY descriptors weighted by statistical
weights. Metalloproteases superfamily is represented by filled circle, beta-N-
acetylhexosaminidase is represented by empty triangles. Families clustered
correctly are highlighted by ovals.

Wk sum and Wk asum that are the only descriptors depending on the weighting
scheme among the constitutional descriptor block.

Considering the constitutional descriptors weighted by the physicochemical
properties, the significant variables are Wmw sum, Wras sum and Whyb sum
that have high relevance on the first PC, while on the second PC the rele-
vant descriptors are the average sum of molecular weight and hydrophobicity
(Wmw asum and Whyb asum). Conversely all the weighted descriptors are rel-
evant on the first two principal components calculated on the constitutional de-
scriptors weighted by the statistical properties. The sum of the statistical prop-
erties Wk sum, where k is the considered weight, have high relevance on the first
PC while the average sum of the weights (Wk asum) are significant on the second
PC.

The scatter plot in Figure 8.3 shows a clear separation between the two super-
families, while the physicochemical weighting scheme (Figure 8.2) is not able to
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Figure 8.6: Score plot of the first two principal components for the data
set D.110. PCA performed on constitutional descriptors weighted by physic-
ochemical weights. Superfamilies clustered correctly are highlighted by ovals.

discriminate between metalloproteases superfamily and beta-N-acetylhexosaminidase
superfamily. The differences between the two scatter plots is due to the different
information collected by the statistical weights.

In the two figures the families correctly separated by the others are high-
lighted by ovals, three families are properly clustered using the physicochemical
properties and four using the statistical weights.

In Figure 8.4 and Figure 8.5 are showed the first two principal components
calculated on the GETAWAY descriptors using the physicochemical weighting
scheme and the statistical weighting scheme respectively. Looking deeply at the
scatter plots obtained from the GETAWAY descriptors a first evidence is that the
physicochemical weights seem more capable to discriminate among superfamilies
and families than the statistical weights. In Figure 8.4 eight different families are
recognised while only five families are properly segregated in Figure 8.5.

The observed behaviour of the two different weighting scheme can be related
to the information collected by the two different types of selected properties.
Statistical properties work better with constitutional descriptors while physico-
chemical properties work better with 3-dimensional descriptors, like the GET-
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Figure 8.7: Score plot of the first two principal components for the data set
D.110. PCA performed on constitutional descriptors weighted by statistical
weights. Superfamilies clustered correctly are highlighted by ovals.

AWAY descriptors. Statistical properties are more related to the composition of
a protein while physicochemical properties are more related to the 3-dimensional
structure. Anyway 3-dimensional descriptors are more capable to discriminate
among families than constitutional descriptors.

8.4.2 Profilin-like fold (D.110)

Profilin-like fold (D.110) is more complex than D.92 fold, it is composed by 7
superfamilies, 16 families and only 36 domains. It means that some superfamilies
and families have modest descriptive information and it could be more difficult to
discriminate them. Profilin-like fold consists of domains with a number of amino
acids between 100 and 186.

The Sensor kinase superfamily collects 2 domains; the Roadblock/LC7 and
the LuxR superfamilies collects only 1 domain each. These three superfamilies
are the worst characterized but in any case they are not confused too much with
the other superfamilies.

In Figure 8.6 is represented the scatter plot of the first two principal compo-
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Figure 8.8: Score plot of the first two principal components for the data set
D.110. PCA performed on GETAWAY descriptors weighted by physicochem-
ical weights. Superfamilies clustered correctly are highlighted by ovals.

nents calculated on the constitutional descriptors weighted by the physicochemi-
cal properties. Analogously the scatter plot of the first two principal components
calculated on the constitutional descriptors weighted by the statistical properties
is shown in Figure 8.7. For both data sets the first two principal components
collects only the 36% of the total variability in the original data.

Like for D.92 fold all the descriptors of these two blocks have the same values,
except for the Wk sum and Wk asum that are the only descriptors depending on
the weighting schemes among the constitutional descriptor block. Considering the
constitutional descriptors weighted by the physicochemical properties the signif-
icant variables are Wp sum, Whyl sum and Whyb sum that have high relevance
on the first PC, while on the second PC the relevant descriptors are the aver-
age sum of all the physicochemical properties except the polarity (Wmw asum,
Whyl asum, Wras asum and Whyb asum).

The scatter plot in Figure 8.7 shows a comparable separation than in Fig-
ure 8.6 among the seven superfamilies. The weighted descriptors calculated in
the constitutional descriptor block show the same behaviour observed for the
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Figure 8.9: Score plot of the first two principal components for the data
set D.110. PCA performed on GETAWAY descriptors weighted by statistical
weights. Superfamilies clustered correctly are highlighted by ovals.

D.92 fold. The sum of the statistical properties Wk sum, where k is the consid-
ered weight, have high relevance on the first PC while the average sum of the
weights (Wk asum) are significant on the second PC.

In Figure 8.8 and Figure 8.9 are showed the first two principal components
calculated on the GETAWAY descriptors using the physicochemical weighting
scheme and the statistical weighting scheme respectively. For both weighting
schemes more than 90% of variance is explained by the first 11 PCs. The first
two principal components in Figure 8.8 explain 66% of the total variability in the
original data, while 50% of the total variability in the original data is explained
by the first two PCs in Figure 8.9.

The greater complexity of D.110 data set compared to D.92 is due to the high
number of superfamilies and families together with a low number of domains.
Conversely to the results obtained with the D.92 data set, for the D.110 data set
GETAWAY descriptors are not able to discriminate better than constitutional
descriptors among different superfamilies and families. For the D.110 data set
both descriptor blocks bring an analogous kind of information.
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8.5 Conclusions

The application presented in this chapter, diversely from the sensitivity analysis
performed in chapter 7, has been applied on proteins whose structure is known.
The availability of the 3-dimensional information enables the calculation of both
2-dimensional descriptors and geometrical descriptors. The analysis has been
conducted in order to evaluate the capabilities of different weighting schemes to
highlight different sources of information.

The attention has been focused on the diverse results obtained calculating
descriptors characterising the amino acids with two different weighting schemes.
A physicochemical and a statistical weighting scheme. Analysing the results ob-
tained applying the principal component analysis emerges that the statistical
weighting scheme appear more informative if it is used together with constitu-
tional descriptors while the physicochemical properties seems more useful if linked
together 3-dimensional descriptors.

This behaviour can be conducted to the fact that statistical properties are
more related to the composition of proteins while the physicochemical properties
of the amino acids are responsible for the 3-dimensional structure of the proteins.





chapter 9

Prediction of two biological

properties

9.1 Introduction

The last application developed during this PhD thesis using the proposed molecu-
lar descriptor based approach is a regression analysis performed on a peptide data
set. Twenty peptide sequences taken from literature [Andersson et al. (1998)]
have been described using molecular descriptors. Two different weighting schemes
have been adopted, the physicochemical weighting scheme described in section
3.5.2 and the WHIM weighting scheme described in section 3.5.4. Due to the ab-
sence of the three-dimensional structure of the peptides only constitutional and
auto-correlation descriptors have been calculated.

The analysis has been conducted independently between descriptors calcu-
lated with physicochemical and WHIM weighting scheme in order to evaluate
the capabilities of the two different representation to highlight the relevant infor-
mation needed to model the two biological responses.
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Table 9.1: The twenty modelled peptide sequences and their values for the
APTT response, both original and log-transformed.

Peptide Sequence APTT Log(1 + APTT)
1 PKPRPDR 5.52 0.81
2 SWKHYW 0.58 0.2
3 SWKYYW 0.79 0.25
4 SWVDAW 1.56 0.41
5 RQGRYWL 1.5 0.4
6 PPGEMD 2.66 0.56
7 EGEGGM 1.58 0.41
8 RHWNIEGRPWWS 0.66 0.22
9 SEWAIEGRPHGW 1.21 0.34
10 FLRGEV 2.32 0.52
11 FMHLST 2.26 0.51
12 FMRPQM 4.14 0.71
13 FGWGQN 4.87 0.77
14 CWPMTRGC 1.09 0.32
15 KPRWWMWK 0.05 0.02
16 KSWQVWVK 0.8 0.26
17 KSWKYYWK 0.04 0.02
18 SWKYYWK 0.03 0.01
19 KSWKYYW 0.03 0.01
20 KMMSWKGK 0.7 0.23

9.2 Andersson Dataset

The twenty sequences evaluated in this application have been collected from the
literature [Andersson et al. (1998)], these sequences belong to a peptide library
of 190 hits from Pharmacia & Upjohn. The twenty considered peptides have
different lengths, from 6 to 12 amino acids. All the twenty peptides showed
activity with respect to the two biological responses modelled using molecular
descriptors, the two responses are:

1. activated partial thromboplastin time (APTT);

2. thromboplastin time (TBPL).

The partial thromboplastin time (PTT) or activated partial thromboplastin
time (aPTT or APTT) is a performance indicator measuring the efficacy of both
the “intrinsic”(now referred to as the contact activation pathway) and the com-
mon coagulation pathways. Apart from detecting abnormalities in blood clotting,
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Table 9.2: The twenty modelled peptide sequences and their values for the
TBPL response, both original and log-transformed.

Peptide Sequence TBPL Log(1 + TBPL)
1 PKPRPDR 17.4 1.26
2 SWKHYW 2.17 0.5
3 SWKYYW 2.34 0.52
4 SWVDAW 1.26 0.35
5 RQGRYWL 6.06 0.85
6 PPGEMD 3.04 0.61
7 EGEGGM 1.2 0.34
8 RHWNIEGRPWWS 0.71 0.23
9 SEWAIEGRPHGW 0.58 0.2
10 FLRGEV 1.94 0.47
11 FMHLST 3.5 0.65
12 FMRPQM 54 1.74
13 FGWGQN 14.64 1.19
14 CWPMTRGC 0.77 0.25
15 KPRWWMWK 0.13 0.05
16 KSWQVWVK 1.1 0.32
17 KSWKYYWK 0.75 0.24
18 SWKYYWK 1.5 0.4
19 KSWKYYW 0.71 0.23
20 KMMSWKGK 0.49 0.17

it is also used to monitor the treatment effects with heparin, a major anticoagu-
lant.

The biological activities are expressed as 50% inhibition concentration (IC50)
in µM, since the biological activities ranged from 0.03 to 5.52 for APTT and
from 0.13 to 54 for TBPL, a log transformation have been performed prior to
modelling. The twenty peptide sequences, both original and log-transformed
values are showed in Table 9.1 for APTT and Table 9.2 for TBPL.

9.3 Results and Discussions

In order to model the two biological responses considered in this application two
different descriptors blocks have been calculated, constitutional and 2-D autocor-
relation descriptors. Three dimensional descriptors have not been calculated due
to the missing information related to the 3-dimensional structure of the consid-
ered peptides.
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Table 9.3: A summary of the final models obtained for APTT response using
the physicochemical weighting scheme.

Size Variables R2 Q2 Q2boot
4 nPro nTrp nAla/nAAs nAsp/nAAs 88.3 83.41 81.02
4 ATS6mw ATS1hyl MATS4hyl GATS4p 88.84 81.29 76.34
4 nTrp nLys/nAAs nMet/nAAs GATS1hyb 89.21 80.46 75.25
3 ATS6mw ATS1hyl MATS4hyl 84.84 75.43 74.6
3 nTrp nLys/nAAs GATS1hyb 84.09 75.34 73.34
3 Whyb sum nPhe nPro 84.79 73.94 72.27
2 nTrp nAsp/nAAs 73.08 65.8 65.1
2 nPro/nAAs ATS3hyb 72.73 60.49 56.73
2 ATS5hyb GATS5mw 65.78 55.34 56.1

Table 9.4: A summary of the final models obtained for TBPL response using
the physicochemical weighting scheme.

Size Descriptors R2 Q2 Q2boot
4 nPhe nGlu/nAAs nPro/nAAs MATS7ras 88.21 73.54 67.12
4 nGln nTrp nArg/nAAs nGlu/nAAs 85.14 73.52 56.25
4 ATS3ras ATS5ras MATS4ras GATS2ras 85.36 73.48 68.37
3 nGlu/nAAs nPro/nAAs MATS7ras 83.96 68.04 62.8
3 nGln nAsp/nAAs nGlu/nAAs 65.83 58.1 47.62
3 ATS1ras ATS5ras GATS5mw 73.31 54.8 51.36
2 nGlu/nAAs MATS7ras 67.14 51.68 51.53
2 nTrp nGlu/nAAs 65.06 46.01 43.72
2 ATS3mw ATS1ras 53.28 36.71 34.37

The two calculated descriptor blocks have been weighted using two different
weighting schemes: the physicochemical and the WHIM weighting scheme. The
molecular descriptors calculated with the physicochemical and the WHIM weight-
ing scheme have been considered separately but following the same approach.
Once calculated the molecular descriptors models have been built using Genetic
Algorithms (GAs) [Goldberg (1989), Leardi et al. (1992), Leardi (1994, 2001),
Todeschini et al. (2003)] as implemented in the MobyDigs package [Todeschini
et al. (2003), Mob (2007)] in order to select subsets of variables that maximise
the predictive power of the multivariate models.
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Figure 9.1: Experimental vs. predicted values of log(1 + APTT) for the
best model with 4 variables (nPro, nTrp, nAla/nAAs, nAsp/nAAs) using
physicochemical weights. (Q2 = 83.41).

9.3.1 Physicochemical weighting scheme

The properties used to characterise the amino acids with the physicochemical
weighting scheme are:

1. molecular weight [Fasman (1976)] (FASG760101);

2. polarity [Grantham (1974)] (GRAR740102);

3. hydrophobicity [Jones (1975)] (JOND750101);

4. residue accessible surface area in folded protein [Chothia (1976)] (CHOC76010);

5. hydrophilicity scale [Kuhn et al. (1995)] (KUHL950101).
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Figure 9.2: Experimental vs. predicted values of log(1 + TBPL) for the best
model with 4 variables (nPhe, nGlu/nAAs, nPro/nAAs, MATS7ras) using
physicochemical weights. (Q2 = 73.54).

The physicochemical weighting scheme is described in section 3.5.2.

Physicochemical weighting scheme collects five different properties; constitu-
tional descriptor block consists of 51 descriptors and 2D autocorrelation descrip-
tors consist of 120 molecular descriptors.

The two different responses (APTT and TBPL) have been modelled sepa-
rately using in both cases genetic algorithms in order to perform the variable
subset selection (see section 5.4). For both biological responses the following
steps have been performed:

1. two different variable populations have been created, the first one collect-
ing all the constitutional descriptors (51 descriptors) and the second one
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collecting all the autocorrelation descriptors (120 descriptors);

2. the selected fitness function was Q2 leave-one-out (see section 5.5.1);

3. a preliminary all subset model approach has been performed looking for the
best models with two variables;

4. the maximum number of variables for each model has been set to three
variables;

5. once the two populations have been stabilised one new population has been
created merging the constitutional and the autocorrelation populations col-
lecting all 171 variables and preserving the best models;

6. the maximum number of variables for each model has been then increased
to four variables;

7. the best five models have been retained from each population;

8. the stability of the selected models has been tested with bootstrap and
y-scrambling analysis.

Three different model populations have been obtained for each response. A
model population collecting constitutional descriptors, a model population col-
lecting autocorrelation descriptors and a model population collecting both de-
scriptor blocks.

In Table 9.3 and Table 9.4 the best models for dimensions between 2 and 4 are
listed for APTT and TBPL responses respectively. Models with two descriptors
are obtained using the all subset selection (see section 5.4.1) while models with
three and four variables have been obtained using the genetic algorithms. Mod-
els with same dimension obtained using constitutional, autocorrelation or both
descriptor blocks had similar predictive power. The APTT response is modelled
better than the TBPL response. Models being constituted by four variables have
a Q2 ranging between 80.46 to 83.41 for APTT response while models with four
variables obtained for TBPL had a Q2 ranging between 73.48 to 73.54.

Looking deeply at the best models emerge that APTT response is modelled
using different constitutional descriptors, the most frequent are number of pro-
lines (nPro) and number of tryptophan (nTrp), one of these two descriptors
occurs in every model containing at least one constitutional descriptor. Autocor-
relation descriptors mostly used are weighted by molecular weight (mw suffix),
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hydrophobicity (hyb) and hydrophilicity scale (hyl). Only one model among the
best ones include also autocorrelation descriptors weighted by polarity (p). No
models include autocorrelation descriptors weighted by residue accessible surface
area (ras). The best model obtained for APTT response using four molecular
descriptors is represented in Figure 9.1.

TBPL response conversely is better modelled by autocorrelation descriptors
weighted by residue accessible surface area (ras). The best 4-dimensional autocor-
relation descriptors model is constituted only by descriptors weighted by residue
accessible surface area. Only two models include a molecular descriptor weighted
by molecular weight. No models for TBPL include autocorrelation descriptors
weighted by hydrophobicity, hydrophilicity or polarity. The most frequent con-
stitutional descriptors is the relative frequency of glutamic acid (nGlu/nAAs) in
a single peptide, this descriptor is selected in all models containing at least one
constitutional descriptor. The best model obtained for TBPL response using four
molecular descriptors is represented in Figure 9.2.

The final models have been further validated by bootstrap [Efron (1979, 1982,
1987)] and response permutations [Lindgren et al. (1996), Eriksson et al. (1997)]
(see sections 5.5.2, 5.5.3). In order to calculate the average predictive power
(Q2

BOOT ), bootstrap procedure is repeated 5000 of time, Q2
BOOT values are re-

ported in Table 9.3 and Table 9.4. Y-scrambling procedure is repeated 300 of
times. Once the model validation has been performed the Y-scrambling param-
eters (a(R2) and a(Q2)) are calculated, final values of a(R2) and a(Q2) for the
models reported in table Table 9.3 and Table 9.4 are included in the expected
limits.

9.3.2 WHIM weighting scheme

The same data set studied weighting the molecular descriptors by physicochem-
ical properties has been studied also weighting the calculated descriptors by the
WHIM indices. The properties considered in the WHIM weighting scheme are:

1. Am (WHIM global dimension descriptor / weighted by atomic masses,
scaled);

2. Km (WHIM shape descriptor / weighted by atomic masses);

3. Dm (WHIM global density descriptor / weighted by atomic masses).

The WHIM weighting scheme is described in section 3.5.4.
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Table 9.5: A summary of the final models obtained for APTT response using
the WHIM weighting scheme.

Size Descriptors R2 Q2 Q2boot
4 nPro nArg/nAAs ATS4Am GATS5Dm 95.76 92.86 89.52
4 ATS3Km ATS1Dm ATS2Dm GATS1Dm 92.14 84.37 81.8
3 nPro ATS4Am GATS5Dm 92.98 88.78 87.9
3 WAm sum nAsn/nAAs nAsp/nAAs 82.47 73.6 69.44
3 ATS6Km ATS1Dm MATS2Dm 80.15 70.86 68.64
2 GATS2Dm GATS6Dm 72.47 60.51 60.76

Table 9.6: A summary of the final models obtained for TBPL response using
the WHIM weighting scheme.

Size Models R2 Q2 Q2boot
4 nPro nGlu / nAAs ATS2Km ATS4Km 86.07 71.25 64.7
4 ATS1Dm ATS2Dm GATS3Km GATS1Dm 78.48 60.77 55.94
3 nGlu / nAAs nPro / nAAs MATS7Km 80.32 61.93 45.19
3 ATS1Dm ATS2Dm GATS1Dm 72.8 57.9 55.18
2 nGlu / nAAs MATS7Km 64.21 48.62 39.67
2 ATS1Dm ATS2Dm 55.5 35.08 33.15

WHIM weighting scheme comprise three different properties and the resulting
calculated descriptors are 47 constitutional and 72 autocorrelation descriptors.

Exactly as for the data set obtained by molecular descriptors calculated using
the physicochemical weighting scheme the two different responses (APTT and
TBPL) have been modelled separately using in both cases genetic algorithms in
order to perform the variable subset selection. The following steps have been
performed:

1. two different variable populations have been created, the first one collect-
ing all the constitutional descriptors (47 descriptors) and the second one
collecting all the autocorrelation descriptors (72 descriptors);

2. the selected fitness function has been Q2 leave-one-out (see section 5.5.1);

3. a preliminary all subset model approach has been performed looking for the
best models with two variables;

4. the maximum number of variables for each model has been set to three
variables;
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Figure 9.3: Experimental vs. predicted values of log(1 + APTT) for the
best model with 4 variables (nPro, nArg/nAAs, ATS4Am, GATS5Dm) using
WHIM weights (Q2 = 92.86).

5. once the two populations have been stabilised one new population has been
created merging the constitutional and the autocorrelation populations col-
lecting all 119 variables and preserving the best models;

6. the maximum number of variables for each model has been increased to
four variables;

7. the best five models have been retained from each population;

8. the stability of the selected models has been tested with bootstrap and
y-scrambling analysis.
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Three different model populations have been obtained for each response. The
first one comprising constitutional descriptors, the second one the 2D autocorre-
lation descriptors and the last one collecting both descriptor blocks.

The best models for dimensions between 2 and 4 are listed in Table 9.5 and
Table 9.6 for APTT and TBPL responses respectively. Models with two descrip-
tors are obtained using the all subset selection while models with three and four
variables have been obtained using the genetic algorithms. Only one model being
constituted only by constitutional descriptors is reported in Table 9.5, it includes
the average sum of the WHIM global dimension index (WAm sum). Anyway,
considering APTT response the models are significantly better than the models
obtained using the physicochemical descriptors. The best model, being consti-
tuted by two constitutional and two autocorrelation descriptors, has a Q2 equal
to 92.86% that is more than ten points higher than the best model with four vari-
ables obtained using the physicochemical descriptors. The best model with four
variables being constituted only by autocorrelation descriptors has a Q2 equal to
84.37%.

Mostly used autocorrelation descriptors are weighted by WHIM global density
index (Dm suffix), these descriptors appear in all the models containing at least
one autocorrelation descriptor. Descriptors calculated using the WHIM global
shape index (Km) and WHIM global dimension index (Am) occurs in two of the
five models containing autocorrelation descriptors. Considering the constitutional
descriptors number of prolines (nPro) occurs in two different models, always
beside ATS4Am and GATS5Dm autocorrelation descriptors. The best model
obtained for APTT response using four molecular descriptors weighted by WHIM
indices is represented in Figure 9.3.

Models obtained for TBPL response using the WHIM weighting scheme have
a lower predictive power compared to those obtained using physicochemical de-
scriptors. Models constituted only by constitutional descriptors are omitted in
Table 9.6 due to the fact that are the same models reported in Table 9.4 because
no models for TBPL include weighted constitutional descriptors.

Like for the previous section the final models have been further validated by
bootstrap and response permutations. In order to calculate the average predictive
power (Q2

BOOT ), bootstrap procedure is repeated 5000 of time, Q2
BOOT values

are reported in Table 9.5 and Table 9.6. Y-scrambling procedure is repeated
300 of times. Once the model validation has been performed the Y-scrambling
parameters (a(R2) and a(Q2)) are calculated, final values of a(R2) and a(Q2) for
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the models reported in table Table 9.5 and Table 9.6 are included in the expected
limits.

9.4 Conclusions

This final application confirm the capability of the proposed methodology to
model responses of a considered data set of peptide of different lengths. The
models obtained using the proposed methodology are significantly better than
the models taken from literature [Andersson et al. (1998)], both using the physic-
ochemical and the WHIM weighting scheme.

APTT response is better modelled than TBPL response, the reason is proba-
bly due to the not homogeneous distribution of the response values for TBPL. In
Figure 9.2 a cluster 10 peptides among 20 with response values between 0.2 and
0.6 is highlighted by an oval. This kind of distribution, where a small portion of
the response space is deeply described and a lot of the response space is not well
represented, is usually an obstacle to build good models.

The results obtained using the physicochemical weighting scheme confirm the
capability of the presented simplified representation of the peptide structure to
describe a peptidic data set. The capability of the WHIM weighting scheme to
improve the predictive power of the molecular descriptor models can be conducted
to the 3-dimensional information contained by the WHIM global dimension in-
dices used as weighting scheme. WHIM global dimension indices are calculated
on the 3-dimensional structure of the isolated amino acids.
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A Web-based Application

10.1 Introduction

Some resources in order to model peptide sequences are available on the web. One
of them is the amino acid index database[Nakai et al. (1986), Tomii and Kanehisa
(1996), Kawashima et al. (1999), Kawashima and Kanehisa (2000)], described in
section 3.4.2. Another database freely available online is the JenPep database
[Blythe et al. (2002)], the database is available via the Internet. An HTML in-
terface allowing searching of the database can be found at the following address:
http://www.jenner.ac.uk/JenPep. JenPep is a family of relational databases, it
contains quantitative data on peptide binding to Major Histocompatibility Com-
plexes (MHCs) [Burden and Winkler (2005), Doytchinova and Flower (2007b),
Doytchinova et al. (2004)] and to Transmembrane Peptide Transporter (TAP),
as well as an annotated list of T-cell epitopes [Doytchinova and Flower (2001),
Doytchinova et al. (2006), Doytchinova and Flower (2006a)]. AntiJen is the suc-
cessor of JenPep, it is a database system focused on the integration of kinetic,
thermodynamic, functional, and cellular data within the context of immunology
and vaccinology [Toseland et al. (2005)]. Another resource is MHCpred and its
last version MHCpred 2.0 that are Perl implementation of partial least squares-
based, multivariate statistical method for the quantitative prediction of peptide
binding to major histocompatibility complexes (MHCs) [Guan et al. (2003b,a,

http://www.jenner.ac.uk/JenPep
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2006), Hattotuwagama et al. (2004a,b, 2006)].
During the PhD thesis, a web-based application have been developed. This

application allow the calculation of the molecular descriptors described in this
thesis. The calculation can be performed both on peptides and proteins using the
physicochemical weighting scheme. This resource, called DragonP, is available on
line at: http://www.michem.unimib.it/dragonP/

Figure 10.1: Screenshot of DragonP web application. File upload, peptides
can loaded uploading a file or directly typing the peptide sequence.

10.2 Description

The DragonP Web Application is a dedicated web site that allows the execution of
the DragonP application in batch mode, after uploading a molecule. This project
has been implemented on a dedicated server located at the Milano Chemometrics
and QSAR Research Group, on which is also installed the beta version of DragonP
for Linux; the batch execution of the software is made possible thanks to PHP
technology.

In the homepage of the project, some information about DragonP can be
found, such as the explanation of the four blocks of descriptors that can be
calculated, together with a short how-to for the website.

http://www.michem.unimib.it/dragonP/
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Figure 10.2: DragonP web application. DragonP settings, choice of the
molecular descriptor blocks and view of the protein tertiary structure visu-
alised by PyMol.

10.2.1 File upload

In the first step it is necessary to upload a proper peptide. It is possible to choose
two ways, as DragonP can be executed on a molecule file containing a peptide,
or just by inserting directly an amino acid sequence.

Molecule files shall be of a known format; DragonP can handle the following
file format: HYPERCHEM files (*.hin), Tripos files (*.mol) or MDL files. Amino
acid sequences can be inserted in 1-letter format (such as AMTMA) or in 3-letters
format (such as AlaMetThrMetAla). The screenshot of the file upload window is
shown in Figure 10.1.

10.2.2 DragonP settings

Once the target peptide is given, some information about the file uploaded are
shown on the website, first of all if the file has been correctly uploaded. On
the right panel, the given molecule is shown, using the tertiary structure rep-
resentation; this is made possible using the PyMol Molecular Graphic System
(http://www.pymol.org) which runs on the webserver. In the lower panel,the

http://www.pymol.org
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Figure 10.3: DragonP web application. DragonP output, view of the log
file and button to download the calculated descriptors in a tabbed text-file.

user can choose which of the four descriptors block has to be included in the cal-
culation. The screenshot of the DragonP settings window is shown in Figure 10.2.

10.2.3 DragonP output

The output log of the calculation is shown in a box, so that the user can check
if the application have been run correctly. The log file produced by DragonP
includes some information about the calculation or rejection of the molecule, the
input file format, the selected descriptors and the calculation time.

The final results of the calculation are stored in a plain-text, tab-separated
file. It can be downloaded by clicking on the given link. The text format is easily
imported and manipulated by most of the software, as it simply reports a table
with the descriptors values on each column, and the molecules on each row. The
screenshot of the DragonP output window is shown in Figure 10.3.
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Conclusions and Perspectives

This PhD thesis presents a methodology for the characterisation of protein and
peptide sequences and structures by means of a molecular descriptor based ap-
proach. In the first part of the thesis the state of the art related to protein and
peptide characterisation using chemometric methods is presented together with
the theory that support the proposed approach.

In the last years several methodology and applications have been proposed
in the literature. Actually most of the applications are related to the descrip-
tion of short peptides in order to predict chemical and biological properties us-
ing the z-scores approach [Hellberg et al. (1987), Sjstrm et al. (1995), Sandberg
et al. (1998), Andersson et al. (1998), Edman et al. (1999), Nystrm et al. (2000),
Doytchinova et al. (2002), Doytchinova and Flower (2003), Guan et al. (2005),
Doytchinova and Flower (2005, 2006b,a, 2007b,a)].

On the contrary the proposed methodology is related to an holistic represen-
tation of the molecular structure using molecular descriptors and can be applied
both on short peptides and on big proteins being constituted on a huge amount
of amino acids. Nowadays the traditional molecular descriptor based approach is
inapplicable on big molecules such as polypeptides and proteins, since an atom
based representation impede the calculation of molecular descriptors on complex
molecules represented by thousands of atoms. The amino acid based represen-
tation studied and presented in this thesis avoids the problems related to the
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calculation of molecular descriptors on big molecules; moreover it prevents the
problems related to information redundancy correlated to the common structural
features shared by all amino acids, including an α-carbon to which an amino
group, a carboxyl group, and a variable side chain are bonded.

The present study demonstrates that the proposed approach is able to provide
valuable information on the characterisation of peptides and proteins.

The presented methodology has been deeply evaluated in the second part of
this thesis where three different applications of the methodology are described.
In chapter 7 a sensitivity analysis has been performed, an artificial data set
have been used in order to evaluate the capability of two different descriptor
blocks (constitutional and auto-correlation descriptors), to be able to discriminate
among different mutated amino acids. The conducted analysis showed that also
small changes on a peptide sequence are highlighted using the proposed descriptor
based approach suggesting that molecular descriptors are able to discriminate
among peptide sequences that differ only on a small portion of the amino acid
sequence.

The second application presented in chapter 8 has been developed on two
different protein folds evaluating how different weighting schemes (i.e. different
amino acid representations), affect the information collected by diverse blocks
of molecular descriptors. Particularly, it has been showed that, constitutional
descriptors are more informative if calculated using the statistical weighting
scheme especially on the Zincin-like fold, while 3-dimensional descriptors showed
a clearer separation of the different families and superfamilies if calculated using
the physicochemical weighting scheme. The proposed approach differs from the
traditional comparison methodology due to its alignment independent compari-
son.

Finally a practical application is described in chapter 9, where a peptide
data set taken from literature has been described using the proposed approach.
Molecular descriptors have been calculated on the peptide sequences considering
separately two different weighting schemes, the physicochemical and the WHIM
weighting scheme. Both amino acid characterisations, combined with genetic
algorithms for variable subset selection, produced models that are considerably
better than models taken from the literature.

In conclusion, the proposed approach has given encouraging results, both on
peptides and on proteins characterisation. Anyway, the studied methodology
could be more improved and studied. A lot of molecular descriptors can be
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evaluated in order to be applied on peptide and protein characterisation. The
evaluation of different weighting scheme can be deeply analysed due to the fact
that different amino acid characterisations can highlight different kind of infor-
mation suggesting that a correct choice of the weighting scheme and molecular
descriptor types are related to the information content.
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List of molecular descriptors

Introduction

In this chapter the labels and the definitions of all the descriptors used in this PhD
thesis are listed. Labels and definitions are reported in a general way, weighted
descriptors are identified by the suffix wi. This suffix is replaced in the PhD
thesis by the proper identification suffix of every weight. Before the list of the
descriptors the list of suffix for every amnino acid weight is reported.

For example if the considered property used to characterise the amino acids is
the residue accessible surface area in folded protein by Chothia [Chothia (1976)]
the Broto-Moreau autocorrelation of a topological structure (lag 1), that in gen-
eral way is ATS1wi, will become ATS1ras and its definition will be “Broto-
Moreau autocorrelation of a topological structure - lag 1 / Weighted by residue
accessible surface area in folded protein (Chothia, 1976)”.

Table 11.1: Suffixes and descriptions of the physicochemical weights.

Suffix Description
mw molecular weight [Fasman (1976)]
p polarity [Grantham (1974)]
hyb hydrophobicity [Jones (1975)]
ras residue accessible surface area in folded protein [Chothia

(1976)]
hyl hydrophilicity scale [Kuhn et al. (1995)]
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Table 11.2: Suffixes and descriptions of the statistical weights.

Suffix Description
rf bs relative frequency in beta-sheet [Prabhakaran (1990)]
rfo relative frequency of occurrence [Jones et al. (1992)]
rm relative mutability [Jones et al. (1992)]
rf ah relative frequency in alpha-helix [Prabhakaran (1990)]
rf rt relative frequency in reverse-turn [Prabhakaran (1990)]

Table 11.3: Suffixes and descriptions of the WHIM weights.

Suffix Description
Am WHIM global dimension index weighted by atomic masses
Km WHIM global shape index weighted by atomic masses
Dm WHIM global density index weighted by atomic masses

Table 11.4: List of constitutional molecular descriptors

ID Symbol Description

1 nAAs number of AAs
2 Wwi sum sum of weight wi
3 Wwi asum average sum of weight wi
4 nAla number of Alanines
5 nArg number of Arginines
6 nAsn number of Asparagines
7 nAsp number of Aspartic acids
8 nCys number of Cysteines
9 nGln number of Glutamic acids
10 nGlu number of Glutamines
11 nGly number of Glycines
12 nHis number of Histidines
13 nIle number of Isoleucines
14 nLeu number of Leucines
15 nLys number of Lysines
16 nMet number of Methionines
17 nPhe number of Phenylalanines
18 nPro number of Prolines
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Table 11.4: List of constitutional molecular descriptors

ID Symbol Description

19 nSer number of Serines
20 nThr number of Threonines
21 nTrp number of Tryptophans
22 nTyr number of Tyrosines
23 nVal number of Valines
24 nAla / nAAs number of Alanines / number of AAs
25 nArg / nAAs number of Arginines / number of AAs
26 nAsn / nAAs number of Asparagines / number of AAs
27 nAsp / nAAs number of Aspartic acids / number of AAs
28 nCys / nAAs number of Cysteines / number of AAs
29 nGln / nAAs number of Glutamic acids / number of AAs
30 nGlu / nAAs number of Glutamines / number of AAs
31 nGly / nAAs number of Glycines / number of AAs
32 nHis / nAAs number of Histidines / number of AAs
33 nIle / nAAs number of Isoleucines / number of AAs
34 nLeu / nAAs number of Leucines / number of AAs
35 nLys / nAAs number of Lysines / number of AAs
36 nMet / nAAs number of Methionines / number of AAs
37 nPhe / nAAs number of Phenylalanines / number of AAs
38 nPro / nAAs number of Prolines / number of AAs
39 nSer / nAAs number of Serines / number of AAs
40 nThr / nAAs number of Threonines / number of AAs
41 nTrp / nAAs number of Tryptophans / number of AAs
42 nTyr / nAAs number of Tyrosines / number of AAs
43 nVal / nAAs number of Valines / number of AAs
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Table 11.5: List of autocorrelation molecular descriptors

ID Symbol Description

1 ATS1wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 1 / Weighted by wi

2 ATS2wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 2 / Weighted by wi

3 ATS3wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 3 / Weighted by wi

4 ATS4wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 4 / Weighted by wi

5 ATS5wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 5 / Weighted by wi

6 ATS6wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 6 / Weighted by wi

7 ATS7wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 7 / Weighted by wi

8 ATS8wi Broto-Moreau autocorrelation of a topological struc-
ture - lag 8 / Weighted by wi

9 MATS1wi Moran autocorrelation - lag 1 / Weighted by wi
10 MATS2wi Moran autocorrelation - lag 2 / Weighted by wi
11 MATS3wi Moran autocorrelation - lag 3 / Weighted by wi
12 MATS4wi Moran autocorrelation - lag 4 / Weighted by wi
13 MATS5wi Moran autocorrelation - lag 5 / Weighted by wi
14 MATS6wi Moran autocorrelation - lag 6 / Weighted by wi
15 MATS7wi Moran autocorrelation - lag 7 / Weighted by wi
16 MATS8wi Moran autocorrelation - lag 8 / Weighted by wi
17 GATS1wi Geary autocorrelation - lag 1 / Weighted by wi
18 GATS2wi Geary autocorrelation - lag 2 / Weighted by wi
19 GATS3wi Geary autocorrelation - lag 3 / Weighted by wi
20 GATS4wi Geary autocorrelation - lag 4 / Weighted by wi
21 GATS5wi Geary autocorrelation - lag 5 / Weighted by wi
22 GATS6wi Geary autocorrelation - lag 6 / Weighted by wi
23 GATS7wi Geary autocorrelation - lag 7 / Weighted by wi
24 GATS8wi Geary autocorrelation - lag 8 / Weighted by wi
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Table 11.6: List of WHIM molecular descriptors

ID Symbol Description

1 L1wi 1st component size directional WHIM index /
weighted by wi

2 L2wi 2nd component size directional WHIM index /
Weighted by wi

3 L3wi 3rd component size directional WHIM index /
Weighted by wi

4 P1wi 1st component shape directional WHIM index /
Weighted by wi

5 P2wi 2nd component shape directional WHIM index /
Weighted by wi

6 G1wi 1st component symmetry directional WHIM index /
Weighted by wi

7 G2wi 2st component symmetry directional WHIM index /
Weighted by wi

8 G3wi 3st component symmetry directional WHIM index /
Weighted by wi

9 E1wi 1st component accessibility directional WHIM index
/ Weighted by wi

10 E2wi 2nd component accessibility directional WHIM index
/ Weighted by wi

11 E3wi 3rd component accessibility directional WHIM index
/ Weighted by wi

12 Twi T total size index / weighted by wi
13 Awi A total size index / Weighted by wi
14 Gwi G total symmetry index / Weighted by wi
15 Kwi K global shape index / Weighted by wi
16 Dwi D total accessibility index / Weighted by wi
17 Vwi V total size index / Weighted by wi
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Table 11.7: List of GETAWAY molecular descriptors

ID Symbol Description

1 ITH total information content on the leverage equality
2 ISH standardized information content on the leverage

equality
3 HIC mean information content on the leverage magnitude
4 HGM geometric mean on the leverage magnitude
5 H0wi H autocorrelation of lag 0 / Weighted by wi
6 H1wi H autocorrelation of lag 1 / Weighted by wi
7 H2wi H autocorrelation of lag 2 / Weighted by wi
8 H3wi H autocorrelation of lag 3 / Weighted by wi
9 H4wi H autocorrelation of lag 4 / Weighted by wi
10 H5wi H autocorrelation of lag 5 / Weighted by wi
11 H6wi H autocorrelation of lag 6 / Weighted by wi
12 H7wi H autocorrelation of lag 7 / Weighted by wi
13 H8wi H autocorrelation of lag 8 / Weighted by wi
14 HTwi H total index / Weighted by wi
15 HATS0wi leverage-weighted autocorrelation of lag 0 /

Weighted by wi
16 HATS1wi leverage-weighted autocorrelation of lag 1 /

Weighted by wi
17 HATS2wi leverage-weighted autocorrelation of lag 2 /

Weighted by wi
18 HATS3wi leverage-weighted autocorrelation of lag 3 /

Weighted by wi
19 HATS4wi leverage-weighted autocorrelation of lag 4 /

Weighted by wi
20 HATS5wi leverage-weighted autocorrelation of lag 5 /

Weighted by wi
21 HATS6wi leverage-weighted autocorrelation of lag 6 /

Weighted by wi
22 HATS7wi leverage-weighted autocorrelation of lag 7 /

Weighted by wi
23 HATS8wi leverage-weighted autocorrelation of lag 8 /

Weighted by wi
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Table 11.7: List of GETAWAY molecular descriptors

ID Symbol Description

24 HATSwi leverage-weighted total index / Weighted by wi
25 RCON Randic-type R matrix connectivity
26 RARS R matrix average row sum
27 REIG first eigenvalue of the R matrix
28 R1wi R autocorrelation of lag 1 / Weighted by wi
29 R2wi R autocorrelation of lag 2 / Weighted by wi
30 R3wi R autocorrelation of lag 3 / Weighted by wi
31 R4wi R autocorrelation of lag 4 / Weighted by wi
32 R5wi R autocorrelation of lag 5 / Weighted by wi
33 R6wi R autocorrelation of lag 6 / Weighted by wi
34 R7wi R autocorrelation of lag 7 / Weighted by wi
35 R8wi R autocorrelation of lag 8 / Weighted by wi
36 RTwi R total index / Weighted by wi
37 R1wi+ R maximal autocorrelation of lag 1 / Weighted by

wi
38 R2wi+ R maximal autocorrelation of lag 2 / Weighted by

wi
39 R3wi+ R maximal autocorrelation of lag 3 / Weighted by

wi
40 R4wi+ R maximal autocorrelation of lag 4 / Weighted by

wi
41 R5wi+ R maximal autocorrelation of lag 5 / Weighted by

wi
42 R6wi+ R maximal autocorrelation of lag 6 / Weighted by

wi
43 R7wi+ R maximal autocorrelation of lag 7 / Weighted by

wi
44 R8wi+ R maximal autocorrelation of lag 8 / Weighted by

wi
45 RTwi+ R maximal index / Weighted by wi
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to be classified, not classified at all, or assigned to more than one class (confused)
and (3) A-CAIMAN deals with the asymmetric case, where only a reference class
needs to be modelled. In this work, the geographic classification of samples of
wine and olive oil has been carried out by means of CAIMAN and its results
compared with discriminant analysis, by focusing great attention on the model
predictive capabilities. The geographic characterization has been carried out on
three different datasets: extra virgin olive oils produced in a small area, with
a protected denomination of origin label, wines with different denominations of
origin, but produced in enclosed geographical areas, and olive oils belonging to
different production areas. Final results seem to indicate that the application of
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it shows on an average basis good performances; second, it is able to deal in
a simple way classification problems related to tipicity, authenticity, and unique-
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searching, virtual screening, and quantitative structure-activity relationship /
quantitative structure-property relationship modeling as well as in genomics and
proteomics. In this paper, a new similarity/diversity measure is proposed as a
new approach for the analysis of sequential data, where useful information can be
also obtained by the ordering relationships between the sequence elements. This
methodology can be applied for evaluating molecular similarity/diversity, using
sets of sequential descriptors, and for evaluating the similarity between spectra,
sensor arrays, and other sequential data such as DNA and protein sequences.
The new proposed distance (weighted standardized Hasse distance) is evaluated
between pairs of Hasse matrices derived from the classical partial-ordering rules.
It can be naturally standardized, thus allowing the interpretation of these dis-
tances as absolute values (e.g., percentage) and deriving simple similarity and
correlation indices. A simple example is taken to highlight the behavior of the
new similarity/diversity measure on DNA sequences taken from the first exons
of the beta-globins for eight different species. Sensitivity analysis has been also
performed, showing the high capability of this measure to take into account small
modifications of the DNA sequences. Finally, a comparison with results obtained
from the literature is given, together with a comparison with matrix invariants
derived from the Hasse matrix.
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perform a comprehensive series of molecular indices/properties calculations and
data analysis. The implemented software is based on a three-tier architecture
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Internet. The developed software includes several popular programs, including
the indices generation program, DRAGON, a 3D structure generator, CORINA,
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and others. All these programs are running at the host institutes located in five
countries over Europe. In this article we review the main features and statistics of
the developed system that can be used as a prototype for academic and industry
models.
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