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Abstract: 
 

Organic pollutants that resist degradation in the environment can 
accumulate in body tissues and cause unavoidable intoxications to 
organisms in wild life as well as humans. The possible effects, usually 
increasing with the cumulative exposure to such chemicals, are not 
always addressed adequately in risk assessment procedures evaluating 
long and short-term contact hazard. Thus, chemicals accumulation, 
degradation and environmental fate are of prime concern for 
REACH when defining side effects due to chronic exposure.  

Characteristics and behavior of organic pollutants have been 
investigated experimentally during the last decades by use of various 
methods of trace analysis. However, the available data still contains 
several gaps. In this aim, REACH promotes the use of alternative 
methods to reduce the number of animal tests and suggests in-silico 
methods such as Quantitative Structure-Activity Relationships 
(QSARs) to fill the lack of knowledge.  

The goal of this thesis, in the framework of the ECO-ITN 
project, was to build QSAR models with high reliability based on 
good experimental data for optimal estimation of environmental 
endpoints of interest for REACH.  New molecular descriptors and 
feature selection techniques have been tested paying particular 
attention to the validation steps and applicability domain definition.  
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The ECO project 

This thesis was carried out in the framework of the Environmental 
ChemOinformatics project (ECO) which is a Marie Curie Initial Training 
Network, Funded by the European Commission under FP7 - People Program. 
The project started on 01/10/2009 and planned to end on the 30/09/2013 [1]. 

The aim of the Marie Curie Initial Training Networks (ITN) is to 
enhance the career of young researchers in Europe. The ECO-ITN project 
aimed at training the fellows in the field of environmental Chemoinformatics 
and to contribute to the implementation of the REACH (Registration, 
Evaluation, Authorization and Restriction of Chemicals) EU regulation. The 
primary objective of this ITN was to contribute to the education of 
environmental chemo-informaticians in both environmental sciences and 
computational in-silico methods. The fellows of the network were then expected 
to apply their knowledge for the implementation of REACH in particular with 
respect to the replacement, refinement and reduction of animal tests by 
alternative (in-silico and in-vitro) methods. 

The project involved seven academic institutions from five EU countries 
(Germany, The Netherlands, Spain, Sweden and Italy). 
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The expertise of the ECO partners consists of both experimental and 
computational chemistry including traditional analytical techniques, modern 
bio-screening methods, molecular mechanics, semi-empirical and ab-initio 
quantum chemical calculations, in addition to the commonly used 
Chemoinformatic and Chemometric techniques. During the project, several 
endpoints of interest for REACH were evaluated by means of both 
experimental and computational approaches. Studies on physico-chemical 
properties, toxicological and complex problems of metabolism and 
biodegradation were carried out. Properties of complex mixtures, fate modeling 
as well as exposure assessment of nanomaterials were also addressed. 

Thesis goals and structure  

The main goal of this thesis was to contribute in filling the lack of knowledge 
about chemicals for regulatory reasons of specific endpoints of interest to the 
European legislation REACH. The study was focused on specific molecular 
properties related to biodegradation and environmental fate of chemicals. 
Methods in agreement with the scope of REACH, in avoiding animal testing, 
such as QSAR modeling were developed in order to predict the endpoints of 
interest. A particular attention was paid to molecular descriptors and their 
relationships to the modeled endpoints. 

The thesis was structured in three parts. In the first part, a general 
introduction about Persistent Organic Pollutants (POPs), their physicochemical 
properties, pathways to the environment and their acute effects on humans and 
wild life is given. The REACH legislation is then introduced, as well as the role 
of QSARs as a tool of trust to provide the missing information about the 
chemical substances with the desired reliability. 

In the second part of the thesis, the different steps required for QSAR 
modeling and the related methods used in this study are introduced. Since the 
predictions of a QSAR model are influenced by the experimental values used as 
response to be predicted, it is fundamental to filter the available information 
and ensure a high quality initial dataset. Methods and algorithms used for this 
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purpose are explained. Then, classical and recent advances in variable selection 
methods are elucidated, since the selection of a proper set of molecular 
descriptors is usually an important step for QSAR modeling. Once the models 
were built using the suitable regression/classification methods, it had to be 
validated and its accuracy measured then its domain of applicability defined. 

The third part of the thesis showed how the previously defined methods 
have been used in order to build and validate the QSAR models. It presented 
the preliminary results of the conducted studies and summaries of the 
published articles. The selected endpoints of interest to the project were the 
octanol-water partition coefficient, bioaccumulation factors and the ready 
biodegradability of chemicals. The obtained results were evaluated in 
comparison with the literature and the selected molecular descriptors were 
discussed in relation to the studied endpoints. In addition to the modeling 
results, a comparison study on different applicability domain approaches was 
carried out and a study on the activity cliffs in the QSAR datasets was 
introduced and the first obtained results are discussed. 
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1. POPs and pathways to the environment 
 

 

 

 

The rapid technological and industrial development during the last decades 
aimed to increase welfare in most parts of the globe. However, it has also led to 
side impacts on human health and the environment. That was due to the fact 
that chemicals production grows roughly in line with the economies especially 
in the developed countries, releasing toxic substances to the environment. 
From the several hundreds of million tons of chemicals produced every year, 
Europe has by far the largest part accounting for 38% of the total [2]. About 
2% of Europe’s GDP and 7% of its employment are provided by chemical 
industry. The 33% of world-wide chemicals production are detained by western 
Europe, of which Germany provides 26%, France 19%, while UK and Italy 
12% each [3]. 

Since hundreds of new substances are marketed each year, the total 
number of chemicals available on the market is possibly exceeding the 100,000 
chemicals that were registered in the European Inventory of Existing 
Commercial Chemical Substances (EINECS) in 1981 [4]. The rising quantities 
and variety of substances released in the environment increase the potential 
damage to humans and biota. However, about 75% of these substances are 
associated with insufficient toxicity and eco-toxicity data [4].  

Potentially dangerous marketed chemicals were developed and used for 
different applications, such as polychlorinated biphenyls (PCBs) as insulating 



 1. POPs and pathways to the environment 
 

4 
 

fluids in electrical equipment, hexachlorobenzene (HCB) to protect crops and 
wood from fungi, and polybrominated diphenyl ethers (PBDEs) to reduce the 
risk of fires. Such substances are often associated with high degree of 
halogenations and turned out to be persistent in the environment as well as 
toxic for living organisms. They are called persistent organic pollutants (POPs). 

Evidence of POP toxicity has been mounted by associating them with 
chronic and acute effects deriving from long term exposure. In addition, POPs 
can also cause cancer, allergies, diseases of the immune system, damage to 
nervous systems, developmental disorders, reproductive disorders as well as 
damage to wildlife [5–7]. 

Rapid progress is being made to reduce the releases of POPs. Also, the 
production of such substances is being gradually phased out by installing 
alternative industrial processes and cleaning equipment. However, POPs 
continue to pose risk to the environment long periods after their production 
and use because of their slow degradation. In fact, due to their persistency, 
these chemicals were also detected in different areas far from their original site 
of production [8,9]. 

To reduce the risks associated with POPs, an agreement has been 
adopted by the European countries under the Convention on Long-Range 
Trans-boundary Air Pollution at the fourth European conference of 
environment in June 1998 (Aarhus, Denmark). Soon after in Montreal, the 
global community started negotiations about a worldwide treaty for safety from 
chemicals which can be released in one part of the globe and distributed in vast 
geographical areas. In 2001, the Stockholm convention on POPs was adopted 
and entered into force in 2004 [10,11]. 

In the framework of the European Commission’s stock-taking legislative 
instruments to govern chemical substances, risk assessment is used to identify 
potential harm caused by different exposure levels. Further knowledge about 
these toxic chemicals and their pathways to the environment is needed to fill 
the huge data gaps and prevent their toxicity effects. 



 1.1. General properties of POPs 
 

5 
 

1.1. General properties of POPs 

The concept of POP is associated with the Stockholm Convention (SC), the 
global treaty developed under the United Nation Environmental Program [12]. 
The SC intent was to identify the chemicals which have to be reduced or 
eliminated from the intentional/unintentional production and use chain. The 
three properties typically used to identify POPs are persistency, 
bioaccumulating potential and toxicity (PBT) [13,14]. Initially, the set of POPs 
consisted of twelve chlorinated chemicals, called “the dirty dozen”, fulfilling the 
PBT and long range environmental transport criteria. Later in 2009, the list was 
updated by adding nine substances including few polybrominated diphenyl 
ethers (PBDEs) [11]. 

POPs are substances that resist degradation in the environment and 
poorly dissolve in water (hydrophobic). Such compounds often have a carbon 
backbone with halogen substituents, for instance, bromine for PBDEs and 
chloride for PCBs. POPs with the same backbone structure but different 
halogen numbers and positioning are called congeners. Usually, congeners are 
associated with different physicochemical properties that are likely affecting 
their fate and transport in the environment [10,15]. 

POPs tend to partition to organic matter in soil and sediments or 
particles in suspension in water, while in biota these compounds accumulate in 
lipids. Their solubility is known to be similar in lipids while it exhibits large 
variations in water. Therefore, one of their major physicochemical differences 
can be expressed in terms of hydrophobicity [16]. The most common 
measurements of hydrophobicity is the octanol-water partition coefficient 
expressed in log values (log KOW, log POW or log P) and calculated by the ratio 
between the concentration in water and 1-octanol at equilibrium [17]. Their 
hydrophobicity degree was demonstrated to be correlated with the number of 
halogens [17–19].  

Their long range atmospheric transport ability is due to their volatility 
allowing them to have repeated evaporation and deposition cycles [20]. They 



 1. POPs and pathways to the environment 
 

6 
 

can also be attached to particles that can be transported for long distances in air 
and water [21]. 

The persistency of a chemical do not depends only on its 
physicochemical properties, but also on the environmental conditions including 
the types of microbes living in the sediments and the concentration of hydroxyl 
radicals in the atmosphere [16].  

Even if anaerobic dehalogenation is a possible way of degradation, POPs 
half life is very long and can reach, in the case of PCDD/Fs, several decades to 
centuries [22–24]. The hydrophobic property in addition to persistency, enable 
a POP to bioaccumulate and reach high concentrations in biota [14]. 

Bioaccumulation and bioconcentration factors (BAF and BCF, 
respectively) are two important measurements for the accumulation of 
chemicals in organisms. These factors are calculated as by the ratio between the 
concentrations in the organism and the surrounding media such as water or 
sediments [25]. BAF takes in consideration all uptake routes, including 
respiratory, dermal and gastrointestinal systems. While for BCF calculation, 
only the passive ways such as respiratory and dermal system are considered 
[25]. Due to their accumulating effect, the acute toxicity of the POPs is mainly 
manifested in the top predators of the food chain and particularly in fish-eating 
organisms [26,27]. 

1.2. Pathways to the environment  

Chemical substances usually find their way into the environment via industrial 
waste and emissions, agricultural production and consumer uses. Once in the 
environment, they can interact with the hosting media to break down into other 
compounds with different properties or persist for long periods. For effective 
risk assessment of chemicals, it is essential to track their environmental fate and 
their exposure implications from manufacture to marketing and use. For each 
chemical compound, transport through air and water as well as its deposition 
into soil and sediments should be investigated. Multimedia fate models are also 
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used to estimate the potential exposure to chemicals by assessing the inputs and 
outputs in a given geographical region [16].  

Air is likely to be the main way most volatile POPs travel through. Due 
to the “grasshopper” effect, substances released in one part of the world can be 
transported to very far regions. This fact explains the origin of the POPs found 
in the Arctic or on high mountains [28].  

Since water covers about 70% of the Earth’s surface, it is highly probable 
that POPs are transported attached to particles and organic matter in 
suspension and, subsequently, end up to deposit in sediments [29]. However, 
the highest concentration of POPs in sediments is always detected close to the 
original sources [30–33]. 

Even with decreased emissions from the sources, due to their 
persistency, POPs can continuously contaminate the aquatic environment by 
dispersion to biota living in the sediments [34,35]. 

Once in living organisms, these pollutants can increase concentration in 
tissues of animals and accumulate at the highest levels of the food chain 
including humans. This process is called biomagnification. Thus, the complexity 
of the multiple exposure modes of these substances requires more knowledge 
about all chemicals to be marketed. To avoid the dangerous effects of direct 
contact or long term accumulation, only safe chemicals should be authorized to 
be manufactured. 
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2. Regulation of chemicals in Europe 
 

 

 

 

The regulation process of chemicals in Europe started in 1976 and it restricted 
the marketing or use of only few hundreds of substances classified as 
carcinogenic, mutagenic or toxic to reproduction [36]. 

For a more safe manufacture and use of chemicals available in the 
European market, the implementation of a new legislation was required. The 
new regulated procedure aiming at evaluating the physico-chemical properties 
of both new and existing chemicals and their adverse effects on humans and 
the environment. Thus, the new regulation (REACH) was made aiming at 
assessing the existing substances within a process of eleven years.  

It is known that most of the manufactured chemicals are missing 
information about toxicity [37,38]. In order to bridge this huge gap of 
knowledge on chemicals without increasing the actual numbers of animals used 
in the required tests, the European Commission made suggestions about 
alternatives to animal testing. This new system encourages the refinement of 
replacement strategies such as the development of new in-vitro methods but also 
the use of the validated in-silico techniques including computational predictive 
models. 
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2.1. REACH, the European legislation about chemicals 

REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) 
is the new European Community regulation on chemical substances and their 
safe use starting from the 1st of June 2007 [39]. 

REACH aimed to protect humans, wild life and the environment by 
assessing the risks that can be caused by chemical substances in a gradual 
process. The most dangerous chemicals are going to be progressively 
substituted as soon as suitable alternatives are found. These goals should be 
achieved in transparency without altering the innovative capability and 
competitiveness of the chemical industry.  

REACH is expected to have a gradual positive impact on health by 
restricting substances of high concern that can be linked to cancers, skin 
irritation, respiratory diseases, vision disorders, asthma, endocrine disrupting, 
inter alia. 

According to World Bank estimates and other prudent assumptions, 
REACH would result in a 10% reduction of diseases caused by chemicals [40]. 
Assuming that these diseases account for about 1% of the overall burden of all 
types of disease in Europe, the reduction of 0.1% would be equivalent to 
avoiding 4500 deaths every year [36]. 

The implementation of the REACH legislation will also increase the 
information on hazards of chemicals and thus improve the quality of the 
environment. It aims to improve the assessment of persistent, bio-accumulative 
and toxic substances so as to prevent them from polluting the air, water and 
soil. 

According to REACH, providing safety information and assessing risk 
of chemicals is responsibility of manufacturers or importers. The required 
properties of the substances should be gathered before dealing it in the market. 
This necessary information for the safe handling of chemicals should be 
registered in the central database managed by the European Chemicals Agency 
(ECHA, Helsinki). 
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2.2. The European Chemicals Agency (ECHA) 

The role of ECHA within REACH is to ensure the proper implementation of 
the legislation and build credibility with all stakeholders by managing the 
technical, scientific and administrative aspects of the regulation at Community 
level [41]. The central point that the Agency acts can be summarized as 
following: management of the registration process, evaluation of the dossiers, 
taking decisions about the suspicious chemicals and coordinating between 
consumers and professionals by running databases of the available hazard 
information.  

Another important role of ECHA is to enable sharing of the public 
information about chemicals at the pre-registration stage by means of substance 
information exchange forums set-up for the purpose. Such forums are useful to 
fill the lack of sufficient experimental and predicted information about 
chemicals in order to avoid testing on vertebrate animals and costs accordingly. 

2.3. Mode of action within REACH 

The idea behind REACH is that chemicals should be tested for any harm to 
humans or the environment by manufacturers or importers before putting 
them on the European market. This is pushing the industries to acquire more 
knowledge about their products and assess any potential risk. Thus, the only 
task left for the authorities is to make sure industries are compliant with all the 
requirements about substances of high concern.   

A registration dossier should be submitted to ECHA for each substance 
manufactured or imported in quantities of 1 ton or above per year otherwise 
the product will not be allowed in the European markets [36]. The dossiers of 
substances potentially harmful to human health or the environment are 
prioritized. According to REACH, the dangerous substances are classified into: 
carcinogenic, mutagenic or toxic to reproduction, persistent, bioaccumulative 
and toxic (PBT) or very persistent and very bioaccumulative (vPvB). Dossiers 
of such suspected substances should contain additional physicochemical 
properties and relevant eco-toxicological information. 
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For the chemicals exceeding the quantity of 10 tons per year, a Chemical 
Safety Report (CSR) is needed. This report should include an assessment of the 
potential hazards as well as a classification to PBT or vPvB substances. The 
CSR is also supposed to include an exposure scenario for potentially dangerous 
substances.  

According to REACH requirements, new experimental testing is allowed 
only if there are no alternatives to provide information about the substance. 
The use of existing information or techniques such as in-vitro, quantitative 
structure-activity relationships (QSARs) and read across are, therefore, 
prioritized. 
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3. QSARS for regulatory purposes 
 

 

 

 

3.1. QSARs and REACH 

One of the central principles of REACH legislation is to keep animal testing as 
the last resort to provide the required information about the submitted 
substances. Alternatives to animal testing are therefore promoted and special 
mechanisms were built-in for the purpose. QSARs are particularly encouraged 
and their use is recognized within the regulation’s legal text by detailing special 
guidance documents [42]. 

QSARs are used to predict the behavior of chemicals from their 
structures, leading to better understanding of the adverse effects of the studied 
substances in cells and tissues. These modeling techniques make use of existing 
experimental data to predict new chemicals. The conceptual basis of QSARs is 
that similar structures are expected to exhibit similar biological behavior. The 
appropriate theoretical descriptors calculated from structural information are 
used to train the models and predict the biological activity of the chemicals. 
Thus, the environmental and eco-toxicological endpoints of interest could be 
assessed complying with the regulatory requirements for human health and 
minimizing, at the same time, the need for animal testing. 

Different principles and guidelines for QSARs have been established by 
the REACH authorities in order to harmonize the models used for predictions. 
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Even being a highly valuable tool, any inappropriate use of these methods 
could cause a failure at REACH compliance check. Subsequently, a move 
forward animal testing can be made, which is in disagreement with reducing the 
costs and waiving animal test requirements. 

3.2. OECD Principles for the Validation of QSARs 

Five principles to establish the validity of QSAR models for use in regulatory 
purposes and assessment of chemical safety have been adopted at the 37th 
Meeting of Chemicals Committee and Working Party on Chemicals, Pesticides 
& Biotechnology, held in Paris on 17-19 November by the OECD Member 
Countries [43,44].  

In this work, attention was paid to these principles during the QSAR 
modeling procedure. The evaluation of each of the five principles is an 
important condition in order to propose models to be applied for the 
regulatory purposes of REACH , which was the aim of this thesis. 

The OECD principles intended to be considered in QSAR model 
validation for regulatory purposes within REACH, are as follows: 

Principle 1: Defined Endpoint 

Since experimental protocols and conditions determining the same endpoint 
may vary from a laboratory to another, it is therefore important to ensure 
clarity in the endpoint that a given model is predicting. To avoid any misleading 
ambiguity regarding the interpretation of the defined endpoint, guidelines have 
been developed to meet the information requirements of a given regulatory 
purpose and in the same time, the scientific sense of defined endpoint referring 
to a specific effect on a specific tissue/organ under precise conditions. 

Principle 2: Unambiguous Algorithm 

Transparency is essential in the used algorithm for building the model and 
generating the predictions for a chemical’s specific endpoint from its structure 
and/or physicochemical properties. This information is useful to independently 
establish the performance and the reproducibility of the predictions of a given 
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model. Any missing information about the used algorithm, which is usually the 
case in commercially-developed models, could rise ambiguity and represent a 
barrier for regulatory acceptance of the model. 

 Principle 3: Defined Domain of Applicability 

Since the reliability of predictions by QSAR models is usually associated with 
limited types of chemical structures, physicochemical properties and 
mechanisms of action, a defined applicability domain is needed. It is the duty of 
QSARs developers to define the needed information and the appropriate 
methods for establishing the applicability domains of their models. 

 Principle 4: Appropriate Measures of Goodness-of-Fit, Robustness and Predictivity 

The intent of this principle is to include all the three steps of the development 
of a QSAR model. Proper techniques to measure the degree of fitting of the 
studied endpoint to the structures of the used chemicals should be applied. The 
robustness of a model is determined in the validation step to avoid any over-
fitting , while its predictive ability could be checked by an external test set of 
compounds that were not included in the fitting step. 

Principle 5: Mechanistic Interpretation if possible 

It is known that is not always easy to provide a mechanistic interpretation of 
QSARs from a scientific point of view, it could also happen that a multitude of 
interpretations are possible for a unique model. Thus, such information is not 
mandatory for a model to be accepted in a regulatory context. The intent of this 
fifth principle is to encourage documenting any attempt to associate the 
significance of the used descriptors to the endpoint that the model aimed to 
predict.  
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1. Introduction 
 

 

 

 

Computer-based tools are increasingly employed in most fields of scientific 
research. The use of computer technologies to process chemical data resulted in 
the relatively new discipline called Chemoinformatics, which combines the use 
of theoretical chemistry and mathematical algorithms. In the fields of 
environmental and life sciences, Chemoinformatics represents a link between 
chemistry and biology. QSAR modeling is an important tool in 
Chemoinformatics and it exploits this theoretical connection. In fact, the 
investigation of the structure-activity relationships (SARs) is mainly based on 
the premise that biological activity (or property in the case of QSPR) of a given 
chemical can be predicted from its molecular structure since it depends mainly 
on its intrinsic nature. The conceptual basis of QSARs is the congenericity 
principle which states that compounds with similar structures are assumed to 
be associated with similar properties. Thus, the biological activity of chemicals 
can be inferred from the properties of the compounds with known 
experimental responses. This explains the relevance of the computational 
predictive models that can be used to fill the lack of knowledge on chemicals 
for scientific as well as regulatory purposes. 

However, QSAR models should first demonstrate high predictive ability 
in order to be useful for regulatory applications. For this reason, general 
guidelines of good practice have been published in the literature [1]. In 
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addition, REACH requires a set of 4 conditions in alignment with the OECD 
principles to be fulfilled for QSAR modeling [2]: 

- the model is scientifically valid; 
- the model is applicable to the chemical of interest; 
- the prediction is relevant for the regulatory purpose; and 
- the method and results are appropriately documented. 

This chapter explains the conceptual basis of QSAR/QSPR as well as 
the methodologies used in this thesis, from data acquisition and preparation, 
through calculation of molecular descriptors, application of appropriate 
machine learning methods till the model validation and the assessment of its 
domain of applicability. 
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2. Data acquisition and curing 
 

 

 

 

The development of a predictive QSAR model is a process of several steps. 
Initially, the gathering and screening of experimental data is required. This step 
is fundamental to providing reliable data for subsequent QSAR models. 
Therefore, it is one of the most important steps of the analysis, since all the 
results will depend on data quality.  

2.1. Data sources  

Collection of experimental data requires a deep investigation in the scientific 
literature to extract the appropriate data from reliable sources. Moreover, 
QSAR models should be based on datasets that present good coverage of a 
wide range of the chemical space. Unfortunately, a single published 
experimental study does not always present a sufficient amount of data needed 
for QSAR analysis. It also occurs that the experimental conditions and/or the 
used test protocol are not explicitly available. This condition can be misleading 
especially for specific and similar endpoints such as BioConcentration Factor 
(BCF) and BioAccumulation Factor (BAF), which differ only by the ways of 
uptake. Thus, merging experimental data from different sources for modeling 
purposes could be a time demanding process. 

However, data collection can be facilitated by the use of experimental 
data collected in publicly available databases. There are several online databases 
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which store information on chemical compounds including physicochemical 
properties, toxicological/eco-toxicological and environmental fate endpoints. 
Examples of these databases are ChemSpider [3], PubChem [4,5], ChemExper 
[6]. These databases have useful searching options, such as chemical name, 
CAS-RN (Chemical Abstract Registration Number) [7,8], PubMed ID [9] 
and/or structure representations such as SMILES and INCHI codes [10]. 

In addition to the information about chemicals, other online sources 
provide also access to modeling tools designed for QSAR, such as VCCLAB 
[11], OCHEM (Online Chemical Modeling Environment) [12], OpenTox [13], 
QSARdb [14], SPARC [15] and PBT profiler [16], inter alia. 

Moreover, some QSAR modeling software allow access to their 
databases. One example is the OECD QSAR toolbox, a huge database of 
referenced entries accessible through a user-friendly interface enabling a rich list 
of features such as multi search options for 2D structures, a large number of 
physico-chemical properties and endpoints for a wide range of chemicals [17]. 
Another relevant data source for QSAR is the online freely available database 
of the United States Environmental Protection Agency (US-EPA) [18]. The 
datasets used to build the physicochemical and environmental fate models 
implemented in EPI (Estimation Program Interface) Suite are available online 
[19]. It can also store QSAR models and provide literature references. 

2.2.  Data curing 

The online QSAR datasets and those included in the software databases may 
contain different types of errors. One of the commonly encountered errors is 
the presence of duplicates of molecules. Duplicates can be perfect copies, and 
in this case the error can be solved by keeping only one of the database entries. 
However, in most of the cases, it is not easy to deal with duplicates. This 
usually happens in merged datasets from different sources and/or experimental 
conditions, which can give different results for the same compound. 
Nevertheless, it also occurs that different entries can be merged resulting in 
“false” duplicates when compounds have the same identifier but different 
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structures and vice versa. This problem can be avoided by using more than one 
identifier (e. g. CAS-RN, INCHI, chemical name, molecular formula) in 
addition to the internal identifier of the database. Matching all of these 
identifiers during queries and making them available with the published QSAR 
model can remove ambiguity for the users. 

Another source of errors in the databases is related to the structure 
representations. This type of errors can highly affect the quality of the model 
since the chemical structures are used to calculate the molecular descriptors. 
Storing the structures in two-dimensional (2D) format rather than 3D can 
facilitate their use and the database management as well as the subsequent 
modeling steps. The commonly used 2D formats are SMILES (simplified 
molecular-input line-entry system) [10], or unique SMILES [20]. 

However, several errors in the SMILES notations can be faced during 
the structures checks [21,22]. The most common are related to stereochemistry, 
valence and charge. 

Other ambiguities could occur when experimental results are reported in 
different units. Thus, all values should be converted to the appropriate unit 
before merging them and proceeding with the modeling step. As an example, 
several endpoints should be given in molar units rather than weight or 
concentrations. This can be explained by the fact that biological activity usually 
depends on the number of present molecules and not on their weight [1]. 

Since the comprehensive assessment of QSAR data requires checks for 
errors and self consistency, dealing with it manually is a hard task especially in 
the case of huge databases.  

Several Chemoinformatic tools and data-mining software are available to 
eradicate the inconsistency of experimental data. The main tools employed in 
this work were ChemBioFinder and KNIME. 
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2.1.1. ChemBioFinder 

A complete set of tools for database management is available in 
ChemBioFinder software (CambridgSoft) [23]. It allows storing of chemical 
information including identifiers, physicochemical properties, notes, tables of 
data and charts. The data can be imported and exported easily in different 
formats. The obtained database is searchable by querying a multitude of field 
combinations. The searching methods can be based on text, numbers, full 
structures or sub-structures for an exact match, similarity or tautomerism 
specifying the desired stereochemistry. This chemical database manager 
performs also searches for duplicates, errors and other special searches. 

This tool is part of the ChemBioOffice software that is a modeling suite 
for chemists and biologists [24]. It performs structure activity relationships 
calculations, clustering, statistics, physicochemical and bioavailability properties 
predictions, viewing and editing the small molecules and peptide structures in 
addition to database management. 

This software suite was used during this project (under a license 
provided by the University of Strasbourg) to analyze a big dataset of 
compounds for log P prediction. 

2.1.2. KNIME 

Another powerful tool extensively used during this work is the data-mining 
software KNIME (Konstanz Information Miner) [25]. It is a user-friendly 
graphical workbench for the entire data analysis process starting from the initial 
data access, transformation and investigation until the predicting analytics, 
visualization and reporting steps. Over 1000 modules, called nodes, are 
provided by its open integration platform including the contribution of the 
users’ community and partner network. The desktop version of KNIME is a 
free and open-source, released under the GNU General Public License (GPL) 
[26].  
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Once KNIME has been started, the installed extensions such as WEKA, 
R and MATLAB integrations and other additional nodes for data analysis are 
loaded and initialized. Then, the workbench is opened showing the platform of 
the tools for data-mining. It is intuitively organized in different sections and 
mainly consists of the workflow editor, the node repository and the node 
description. 

To build a new workflow, the nodes are dragged from the node 
repository to the workflow editor. The selected nodes are, then connected 
according to the desired order through their input/output ports and configured 
to perform the needed tasks. In the end the workflow is executed, following the 
right order of the nodes or in parallel if possible.  

The repository contains all the installed nodes organized in categories 
and subcategories. By default, KNIME offers different features of preinstalled 
nodes for Chemoinformatics as well as other fields. It has nodes for integrated 
scripting languages (Perl, Python, R, MATLAB) and packages of basic 
input/output and advanced data processing operations.  

KNIME workflows can interact with any software installed on the 
computer by using the “External tool” node. To interact with online sources, 
KNIME has the “Generic Web-service Client” node. During this work, this 
tool was particularly useful for retrieving and/or checking the chemical 
structures from online databases that provide SOAP web-services. ChemSpider 
database gives free access for academic users to its APIs services for searching 
and retrieving chemical information through automated workflows such as 
KNIME or Pipeline Pilot [27]. OCHEM also offers several API services for 
uploading data as well as creating and applying QSAR models [28]. The newly 
developed node named CIR (Chemical Identifier Resolver) have been used in 
order to exploit CACTUS the online service of the NCI/NIH for checking 
chemical structures and converting different formats [29,30]. 

There is a wide range of nodes developed by the users’ community and 
KNIME partners. These packages are continuously improved and updated 
while new ones are being released with every version. In the field of 
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Chemoinformatics, there are several useful tools that have been included in the 
node repository, such as: ChemAxon tools, the Chemistry Development Kit 
CDK, PaDel and many others that allow performing all steps of data gathering 
and curing as well as modeling and predicting of new chemicals. The 
developers of KNIME have recently published a book entitled “Guide to 
Intelligent Data Analysis” to explain many data-mining techniques giving 
examples of how it can be applied using KNIME workflows [31]. 
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3. Molecular descriptors 
 

 
 
 

3.1. Introduction 

Structure–activity relationships (SARs) are theoretical models relating structural 
features of chemicals to their experimental activity/property. These models are 
used in order to predict physicochemical, biological or fate properties of a given 
molecule on the basis of its chemical structure. 

The complexity of a molecular structure is due to the fact that most of 
its properties cannot be derived from the summation of the properties of its 
single atoms [32]. Hence, it is a holistic system that depends on the atomic 
connections and interactions. Consequently, a molecular structure has not a 
unique representation but several possible models depending on the theoretical 
approach adopted and the degree of approximation. 

 
Figure 1: different levels of structural representation. 
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As shown in Figure 1, different “symbolic” representations for the same 
molecule are possible. It can vary from the simple nomenclature or molecular 
formula to the 2D representation based on the graph theory and the more 
complex 3D conformations [33,34]. However, these representations, offering 
different aspects of the chemical information, are usually not derivable from 
each other. 

These different levels of representations are used by scientific 
researchers to retrieve the corresponding theoretical information encoded in 
the molecular structure in order to establish the desired relationships between 
the studied structures and the experimentally demonstrated properties. This 
information is converted to a significant number called molecular descriptor. 

By definition: “The molecular descriptor is the final result of a logic and 
mathematical procedure which transforms chemical information encoded within a symbolic 
representation of a molecule into an useful number or the result of some standardized 
experiment” [32]. 

For the key role they are playing in many fields of scientific research, a 
special interest is given to the development of molecular descriptors. 
Thousands of descriptors have been proposed in the literature. Their list is 
being continuously updated and their number increasing with the complexity of 
the investigated chemical systems. This is enhanced by the fast increase of the 
computational speed enabling the rapid calculation of molecular orbital and 
quantum mechanical descriptors such as charges, dipole moments and energy 
levels. 

Molecular descriptors are required to encode the hydrophobic, electronic 
and steric aspects of a molecule in order to be able to describe the biological 
activity of a chemical in a living organism.  

As for structural representations, molecular descriptors are classified in 
five dimensions equivalent to different levels of “complexity” according to the 
encoded chemical information: 

- The 0D corresponds to the molecular formula. At this level, the 
retrieved information is independent from any structural 
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representation and can be referred to as weighting schemes, atom 
type counters or constitutional indices. The UIPAC International 
chemical Identifier (InChI) is also used as a descriptor to predict 
properties of chemicals [35].  

- In the 1D class, only partial knowledge of the structure concerning 
functional groups and fragments is needed. Such groups of 
adjacently connected atoms in a molecule are typically used in 
substructural analysis. The presence of biological activity related to a 
substructure is called structural alert [36].  

- The 2D class of descriptors is based on graph theory. These 
descriptors are mainly topological and connectivity indices. Recently, 
the 2D molecular representations, such as SMILES, were also used 
as descriptors for QSPR models [37].  

- The 3D descriptors are derived from the geometrical representations 
of the molecules and they encode information about the size and 
shape of a studied conformation of the molecule.  

- Finally, the 4D descriptors take into consideration the flexibility 
aspect of the 3D structural representation of the molecule used in 
4D- or Dynamic-QSAR. This class of descriptors also includes the 
stereo-electronic representations characterizing the electronic 
interactions of a molecule with its surrounding environment. This 
concept is the basis of the grid-based QSAR techniques such as the 
Comparative Molecular Field Analysis (CoMFA) [38–40]. 

A comprehensive review of molecular descriptors has been published by 
Todeschini and Consonni [32]. 

Since the models developed in this research work were aimed to be used 
in regulatory purposes within the new European legislation on chemicals 
(REACH), care has been taken in the choice of molecular descriptors to be 
included in the models. Only interpretable and reproducible descriptors have 
been considered. Thus, descriptors based on 3D representations were excluded 
in order to avoid the irreproducible geometrical optimization of molecular 
conformers.  
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3.2. Analysis of new molecular descriptors 

In this work, in addition to the classical molecular descriptors a set of new 
descriptors has been evaluated. In particular, the recently developed spectral 
indices, derived from different graph matrices, have been analyzed for the first 
time and used later in the QSAR models [41]. Moreover, this analysis focused 
on some other topological descriptors which have never been used to model 
environmental endpoints and other string representations which are relatively 
new descriptors for QSAR modeling, being only used in database searching. 

3.2.1. Spectral indices 

Spectral indices are molecular descriptors based on the eigenvalues of graph 
theoretical matrices. Since they can be derived from any graph-theoretical 
molecular matrix, there is a large number of combinatorial possibilities of these 
indices [32,42,43]. Besides the adjacency (A), Laplacian (L), Barysz (Dz) and 
Burden (B) matrices, some other matrices to derive spectral indices are the 
distance-path matrix, Szeged matrix, distance valency matrices, geometry 
matrix, resistance distance matrix and conductance matrix [42,44–47]. 
However, not all of the combinations that can be derived from such matrices 
have already been evaluated and used as molecular descriptors for 
QSAR/QSPR studies. 

Using a molecular matrix 𝐌(𝐴 × 𝐴) with a weighting scheme 𝑤, the 
most commonly used indices are calculated as following: 

𝑆𝑝𝐴𝑏𝑠(𝐌,𝑤) = �|𝜆𝑖|
𝐴

𝑖=1

 

𝑆𝑝𝑃𝑜𝑠(𝐌,𝑤) = �(𝜆𝑖+)
𝐴+

𝑖=1

 

𝑆𝑝𝑀𝑎𝑥(𝐌,𝑤) = 𝑚𝑎𝑥𝑖{𝜆𝑖} 

𝑆𝑝𝑀𝑎𝑥𝐴(𝐌,𝑤) = 𝑚𝑎𝑥𝑖{|𝜆𝑖|} 
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where 𝜆𝑖 are the eigenvalues of the matrix or spectrum. 

𝑆𝑝𝐴𝑏𝑠 is the sum of the 𝐴 absolute eigenvalues of the molecular matrix. 
When derived from the adjacency matrix, this entity is called the graph energy 
(E) [48–50]. It is also called the Laplacian graph energy when it’s calculated 
from the Laplacian matrix [51,52]. 𝑆𝑝𝑃𝑜𝑠 is the sum of the 𝐴 positive 
eigenvalues of the weighted matrix. 𝑆𝑝𝑀𝑎𝑥 is the leading eigenvalue of the 
spectrum corresponding to the Lovasz-Pelikan index when it’s derived from 
the adjacency matrix [53]. 𝑆𝑝𝑀𝑎𝑥𝐴 is the maximum absolute value of the 
spectrum [32]. 

The spectral moments are a similar class of molecular descriptors. 
Applied on the weighted graph-theoretical matrix (𝐌,𝑤), the spectral 
moments are defined in terms of the kth power of eigenvalues [32]. These 
descriptors are calculated as following: 

𝜇𝑘(𝐌,𝑤) = �𝜆𝑖+
𝑛

𝑖=1

 

where 𝑘 = 1, … , 𝑛 define the order of the spectral moment. 

The spectral moments were extensively used by E. Estrada in the 
QSAR/QSPR studies [54–57].  

Although being largely investigated, due to their large number, spectral indices 
and spectral moments have not been fully investigated tested and used in the 
literature of QSAR modeling. In this work, some of these descriptors have 
been successfully included in the QSAR models for predicting biodegradability 
of chemicals [58]. 

Two new families of spectral indices have been recently developed and 
published in the literature [41]. These indices are calculated on the same basis as 
the previously defined spectral indices, using any graph-theoretical matrix 

𝐌(𝑤), its eigenvalues 𝜆𝑖 and their average �̅�. 

The sum of absolute deviations from the average eigenvalue: 



 3. Molecular descriptors 
 

36 
 

𝑆𝑝𝐴𝐷(𝐌,𝑤) = ��𝜆𝑖 − �̅��
𝑛

𝑖=1

 

The mean absolute deviation which is size independent: 

𝑆𝑝𝑀𝐴𝐷(𝐌,𝑤) =
∑ �𝜆𝑖 − �̅��𝑛
𝑖=1

𝑛
 

Tested in some univariate models, these indices showed interesting 
properties and modeling ability [64]. In this work, 𝑆𝑝𝑀𝐴𝐷 indices have been 
used to model the bioaccumulation of polybrominated diphenyl ethers in 
aquatic species [59]. 

These descriptors have several useful features for QSAR/QSPR studies. 
Even though these indices are extracted from relatively complicated matrices, 
their decomposition and interpretation could lead to some relevant correlation 
that describes the physicochemical and/or biological properties of the 
investigated molecular structures [54]. The contribution of such descriptors to 
the studied properties can be described by means of known properties such as 
molecular mass, branching or steric features of the structures [60]. In addition 
to QSAR analysis, these descriptors can also be useful in similarity/dissimilarity 
studies of chemicals [54]. 

3.2.2. Matrix-based descriptors 

Matrix-based descriptors are topological indices calculated in two steps. First, 
the information encoded in the H-depleted molecular graphs of chemicals was 
encoded into the graph-theoretical matrices. Then, quantitative indices were 
obtained by applying a set of basic algebraic operations to the graph-theoretical 
matrices [32]. All the calculations were performed by the software DRAGON 
[61]. 

The topological indices are molecular descriptors derived from the 
molecular graph. They numerically quantify the molecular topology 
independently from the vertex numbering or labeling. These indices are able to 
encode the structural features of the molecules such as shape, size, cyclicity, 
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molecular branching and atom types [62,63]. One example of the most used 
topological indices is the connectivity indices. These latter ones are derived 
from the H-depleted where each vertex is weighted by the vertex degree [64]. 

The adjacency matrix (A), also called vertex adjacency matrix, is one of 
the fundamental graph-theoretical matrices. It encodes the connections 
between the adjacent pairs of atoms [65]. This matrix is an important source for 
molecular descriptors calculation since different other useful matrices, such as 
Laplacian (L), Barysz (Dz) and Burden (B), are derived from it [32]. The latter 
matrices are used to calculate the different 2D matrix-based descriptors 
considered in this study. 

Laplace matrix L is given by the difference between a diagonal vertex 
degree matrix and the adjacency matrix A: 

[𝐋]𝑖𝑗 = �
−1         if (𝑖, 𝑗) ∈ E(G)
𝛿𝑖              if 𝑖 =  𝑗              
0            if (𝑖, 𝑗) ∉ E(G)

� 

where δi is the i-th vertex degree, that is, the number of vertices adjacent to 
vertex i and E(G) is the set of graph edges. 

Burden matrices 𝐁(𝑤) are augmented adjacency matrices defined to 
account for heteroatoms and bond multiplicity calculated as the following:  

[𝐁(𝑤)]𝑖𝑗 =

⎩
⎪
⎨

⎪
⎧ �𝜋𝑖𝑗∗            if (𝑖, 𝑗) ∈ E(G)

𝑤𝑖
𝑤C

               if 𝑖 =  𝑗              

0.001         if (𝑖, 𝑗) ∉ E(G)

� 

The diagonal elements are atomic carbon-scaled properties such as the 
mass (m) and the polarizability (p). The off-diagonal elements corresponding to 

pairs of bonded atoms are the square roots of conventional bond orders π* 
(i.e., 1, 2 , 3, and 1.5 for single, double, triple and aromatic bonds, respectively). 
The remaining matrix elements are set at 0.001 by default. 
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Barysz matrices 𝐃𝐳(𝑤) are weighted distance matrices obtained by 
generalizing the Barysz weighting scheme in terms of conventional bond orders 

π* and any atomic property [66]: 

[𝐃𝐳(𝑤)]𝑖𝑗 = �
𝑑𝑖𝑗(𝑤,𝜋∗)          if 𝑖 ≠ 𝑗

1 −
𝑤C
𝑤𝑖

               if 𝑖 = 𝑗
�                𝑑𝑖𝑗(𝑤,𝜋∗)

= ��
1
𝜋𝑏∗

∙
𝑤C2

𝑤𝑏(1) ∙ 𝑤𝑏(2)
�

𝑑𝑖𝑗

𝑏=1

 

where wC is any atomic property, such as Sanderson electronegativity (e), of the 

carbon atom and wi the corresponding value of the i-th atom. dij(w,π*) is a 
weighted topological distance that is the sum of the edge weights over all bonds 
involved in the shortest path between vertices vi and vj. The subscripts 𝑏(1) and 
𝑏(2) are representing the two vertices incident to the considered b-th edge. 

The hyper-Wiener-type indices (𝐻𝑦𝑊𝑖) and the Balaban-like indices (J) 
are two examples of the topological indices that can be derived from the 
previously described matrices (𝐁(𝑤) and 𝐃𝐳(𝑤)) [67,68]. Variances of theses 
indices calculated using the mass (m) and electronegativity (e) as weighting 
schemes have shown interesting modeling properties [58]. 

The 𝐻𝑦𝑊𝑖 indices, also called hyper-Wiener operator, are calculated by 
analogy to the hyper-Wiener index (𝑊𝑊) derived from the Wiener matrix by 
taking into consideration also the diagonal elements of the weighted matrix 
𝐌(𝑤) [32,69]. 

The general formula for calculating the hyper-Wiener-type index is the 
following [67]: 

𝐻𝑦𝑊𝑖(𝐌;𝑤) =
1
2
∙���[𝐌(𝑤)]𝑖𝑗2 + [𝐌(𝑤)]𝑖𝑗�

𝐴

𝑗=𝑖

𝐴

𝑖=1

 

where 𝐴 is the number of graph vertices and 𝐌(𝑤) is a graph-theoretical 
matrix calculated using the weighting scheme 𝑤.  
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While the original Wiener index (W), which is one of the first molecular 
descriptors, is obtained by summing the lengths of the shortest paths in the 
graph [70]. It was the first descriptor proposed for molecular branching [71].  

The Balaban-like indices are similar to the Balaban distance connectivity 
index which is a graph invariant molecular descriptor independent from the 
molecular size or number of rings [72–74]. They are also calculated in a similar 
way. However, in the Balaban-like index the vertex distance degrees are 
substituted by the row sums of the considered graph-theoretical matrix [32].  

The Balaban-like index general formula is given by [68]: 

𝐽(𝐌;𝑤) =
B

C + 1
. � � 𝑎𝑖𝑗 . �𝑉𝑆𝑖(𝐌;𝑤).𝑉𝑆𝑗(𝐌;𝑤)�−1/2

𝐴

j=i+1

𝐴−1

i=1

 

where A, B and C are the number of vertices, edges and rings, respectively. 𝐌 is 
the graph-theoretical matrix calculated using the weighting scheme 𝑤. 𝑎𝑖𝑗 the 

elements of the adjacency matrix and 𝑉𝑆 is the vertex sum operator applied to 
the matrix 𝐌. 

3.2.3. Vectorial descriptors 

The vectorial descriptors are a special class of molecular descriptors, initially 
developed to perform queries in big databases for similarity searching [75,76]. 
Recently, these bit-strings started to be used as descriptors for QSAR modeling 
[77–80]. Since they usually consist of fixed lengths of strings mostly varying 
from hundreds to thousands of bits to enclose the most of the needed 
information, the variable selection step is always skipped. 

This class of descriptors can be categorized into two groups: structural 
keys and fingerprints. Starting from a set of predefined structural features, the 
structural keys can be binary vectors specifying the presence and absence by 1 
and 0, respectively, or can be counts of the selected functional groups, 
augmented atoms, atom pairs, atom-type electro-topological states (E-states), 
pharmacophore points, etc [81,82]. Fingerprints, in the other hand, are Boolean 
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vectors defining a set of patterns and generated, by means of hashing 
algorithms, in a way to capture the common chemical features present in a data 
set [83]. Whereas structural keys present a straightforward correspondence 
between bin and fragments, hashed fingerprints may encode several fragments 
into a single bin according to the used string hashing algorithm [10]. 

Following the general classification pattern for molecular descriptors, 
these string representations of chemical structures are categorized in 2D, 3D 
and 4D accordingly [79,80,84–87]. 

In this work, only structural keys have been tested for QSAR modeling 
towards the endpoints of interest for REACH. These fragmental bit-strings 
have been already used in the literature to model biodegradability of chemicals 
[77]. 

Several types of structural keys have been presented in the literature. 
Their string lengths can vary depending on the amount of information 
encoded. The predefined dictionary of fragments used in indexing the chemical 
structures usually consists of small groups of atoms, functional groups or rings. 

Examples of commonly used 2D structural keys implemented in specific 
automated tools are MACCS and PubChem keys. 

MACCS keys, the Molecular ACCess System descriptors, are created by 
Molecular Design Limited [88]. They are 2D substructural descriptor encoding 
atoms types, rings and bond information. Originally, it was generated in a 960 
key-bits format and later a subset of 166 key-bits was extracted [89]. 

The PubChem binary substructure keys are developed to be used by 
PubChem database in order to perform the searching queries [5]. The length of 
this string is 881 bits, with a four-byte prefix, the size of this descriptor is 
therefore 115 bytes. The PubChem bit-string is divided in 7 sections of 
SMILES or SMARTS (SMiles ARbitrary Target Specification) notations [10]. 
These sections encode hierarchic atom-type counts, rings, atom pairs, atom 
nearest neighbours, atom connections, simple and complex SMARTS patterns 
[90]. 
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3.3.  Software for descriptor calculation 

Several tools for descriptor calculation have been used along this thesis. Owing 
to the wide variety of packages available, only software used during this work 
are presented. 

3.3.1. DRAGON 

Thanks to its large number of descriptors, DRAGON software is one of the 
most widely used tools for molecular descriptors calculation [61]. It was the 
main tool of molecular descriptors calculations used in this work. It calculates 
almost 5000 molecular descriptors [91]. To facilitate the calculation task for 
users, the descriptors are categorized in 29 logical blocks of known groups such 
as constitutional indices, topological indices, geometrical descriptors, 2D and 
3D atom pairs, functional groups and atom-type E-states. In addition, the 
calculation of several important molecular properties such as logP, topological 
polar surfaces, Van der Waals surfaces as well as some drug-like indices such as 
Lipinski’s rule of 5 is also provided. These properties and many others are also 
available in the related application dProperties [92]. These two packages 
support all the commonly used molecular formats and perform a preliminary 
check for the structures, i.e., erroneous and disconnected structures are usually 
rejected. DRAGON calculations can be performed from its intuitive and user-
friendly interface or in batch mode by command line. Recently, DRAGON can 
also be executed in batch mode from a KNIME workflow using its dedicated 
node. In addition to molecular descriptor calculation, this software allows 
performing a preliminary analysis of the calculated descriptors prior to the 
modeling stage. Pair-wise correlations, Principal Component Analysis (PCA), 
graphical analysis and import of external variables are other facilities provided 
by DRAGON. 

3.3.2. SubMat 

SubMat is a commercial software developed by the Chemometrics group of the 
Wien University of Technology [93]. It allows the generation of binary 
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substructure descriptors from a user-provided list of predefined substructures 
checking for their presence/absence. The input files of both molecular 
structures and fragments dictionary must be in Molfile format [88]. The 
substructure searching method is based on the complete atom-atom and bond-
bond matching [94,95]. The developers of the software have also provided a list 
of 1365 substructures covering a wide range of fragments based on mass-
spectrometry fragmentation [96]. The maximum molecule size allowed is 127 
atoms explicitly defined and 255 bonds per structure. 

3.3.3. The Chemistry Development Kit 

The Chemistry Development Kit (CDK) is an open-source Java library for 
structural Chemoinformatics and Bioinformatics [97]. It is available under the 
terms of the GNU Lesser General Public License (LGPL) [98]. Thus it is freely 
available for use and modification by academic and industrial institutions and 
may be integrated in proprietary packages [99]. Subsequently, its libraries started 
to be a basis for several software projects [97]. The development of the tool-kit 
is involving an international team of collaborators to maintain and update its 
packages providing a rich list of molecular modeling methods including 
structural rendering, searching, parsing and generation of chemical structures. 
In the recent versions of the software, the library became more 
Chemoinformatics oriented by adding packages for 2D and 3D molecular 
descriptor calculations as well as QSAR modeling tools [100]. 

A dedicated graphical user interface was designed for the molecular 
descriptor calculations [101]. The CDK Descriptor Calculator GUI is divided in 
two sections. One is providing a list of 6 blocks of descriptors such as the 
topological, constitutional and geometrical descriptors [102]. The second 
section is dedicated to the substructure keys including MACCS, PubChem and 
E-state keys, as well as a hashed fingerprint of 1024 bits based on the Daylight 
theory [10,97]. The CDK Cheminformatics tool-kit is also available as package 
of several nodes for KNIME.  
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3.3.4. PaDEL 

PaDEL is a useful software for calculating molecular descriptors and 
fingerprints [103]. It provides 863 descriptors which are categorized in 729 1D-
2D descriptors and 134 3D descriptors, in addition to 10 types of vectorial 
descriptors consisting of sub-structural keys and fingerprints. The software is 
mainly based on the CDK tool-kit, however, additional descriptors were 
implemented by the developers. These descriptors include E-state indices, logP, 
energy relation descriptors, ring descriptors as well as Laggner’s and Klekota-
Roth molecular substructures [104–106]. Developed in Java programming 
language, PaDEL has the possibility to be easily integrated into other software 
(e.g. for QSAR modeling), called by command line or used as a standalone 
application GUI. Nodes for KNIME are also developed and available for free 
download as well as the source classes of the software [107]. 
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4. Variable selection techniques  
 

 

 

 

Though only one tool of molecular descriptor calculation is used and not all 
available types of descriptors are considered, the initially calculated descriptors 
can reach several hundreds or thousands. Certainly, such a large pool of 
descriptors will enclose not only feature rich but also redundant and irrelevant 
information for the subsequent QSAR modeling. However, a good QSAR 
model should be parsimonious, that is, including a set of variables which is 
information rich but as small as possible in order to avoid overfitting and allow 
the model interpretation. Hence, it is important to reduce the initial number of 
calculated descriptors before the modeling step.  

The first step of feature selection is usually a filtering step. It consists of 
the removal of highly correlated, constant and near constant descriptors. The 
methods that can be applied at this stage are unsupervised since the studied 
experimental response is not included in the analysis of variables. 

In DRAGON, this step can be carried out before exporting the 
calculated descriptors. Pair-wise correlation coefficients are calculated for all the 
descriptors. If a pair of descriptors has a linear correlation coefficient larger 
than a defined threshold the descriptor showing the largest average correlation 
with all others is discarded.  

Once the initial pool of descriptors has been reduced by means of initial 
filters, the suitable subset to build the QSAR model for the studied 
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activity/property must be selected. Hence, feature selection methods coupled 
with the desired regression or classification algorithms can be applied. Several 
algorithms for variable selection have been proposed in literature. Most 
common examples are Genetic Algorithms (GAs) [108–110], stepwise 
forward/backward selection [111], particle swarms [112], simulated annealing 
and ant colony algorithms [113,114]. In this work, GAs and forward selection 
were considered. 

4.1.  Stepwise forward selection 

Forward variable selection is one of the most simple and fast selection 
techniques. Starting from a first descriptor and adding the remaining 
descriptors one by one, it evaluates the performance of the model by 
optimizing a fitness function [111]. The fitness function is chosen according to 
the type of the modeled response that can be continuous for regression models 
or categorical in the case of classification models. Thus, it could be for example 
the error rate in classification or the sum of squared residuals in regression. The 
results of this method are highly depending on the first included variables and 
the information included in the initial pool of descriptors cannot be completely 
explored. Consequently, the final selected descriptors are not necessarily the 
best representative descriptors of the original set. 

4.2.  Genetic Algorithms (GAs) 

Genetic Algorithms (GAs) are one of the nature-inspired evolutionary 
algorithms. It is based on the biological concept of evolution to optimize the 
searching methods [115]. GAs are widely used in the fields of Chemometrics 
and Chemoinformatics [110,116,117].  

In QSAR modeling, these algorithms are applied on the multivariate 
descriptor space in order to find the optimal subsets of descriptors. The 
evolution process is carried out by maximizing the predictive ability of the 
models measured by a fitness function [108,109].  



 4.2. Genetic Algorithms (GAs) 
 

47 
 

The used terminology is adopted from the field of biological evolution. 
Thus, a population is an ensemble of individuals consisting of a chromosome 
and its associated fitness value. A chromosome is defined as Boolean vector 
describing the presence/absence of genes that represent the subset of selected 
variables. Each chromosome corresponds to a model with a certain predictive 
ability. 

The evolution process is performed in several steps. First, the initial 
population is randomly created. The number of initial chromosomes as well as 
their size are user defined, a priori. The models are, then, built and ordered 
according to their predicting ability. The fitness function depends on the nature 
of the endpoint being modeled. The different predictive and fitting measure 
methods are explained in Section II.6. 

The following is the reproduction step aiming to create the child 
population. Starting from the parents that are pairs of individuals randomly 
selected, the son chromosome is generated using the same genes of the parents 
by applying the two-fold genetic operations. A newly created individual is 
evaluated and ranked if it is unique in the current population, otherwise, it is 
automatically rejected. If its rank is better than at least one of the existing, the 
created child is a new member of the population excluding the worst one to 
keep the size constant.  

Crossover is a genetic operation that consists of swapping portions of 
the chromosomes of the parents. A variety of crossover ways have been 
described in the literature [108]. One of the possible implementations is to 
restrict the cutting operation to a single point. Then the two new chromosomes 
are created by exchanging the descriptors from one side of the split. The intent 
of the cross over is to generate better models than those in the initial 
population by preserving the best portions of the starting chromosomes.  

The second operation is the mutation which is performed on a single 
chromosome. In order to mirror its low frequency in natural biological 
evolutions, mutation is restricted to a low user defined probability. It consists 
of randomly changing one of the descriptors of a given chromosome by 
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another one from the pool aiming to explore the maximum of the descriptors 
space and to avoid “premature” convergence by getting stuck in a local solution 
and miss the optimal one. 

These two operations are repeated creating generations of populations 
that are evaluated and ranked during the evolution process that takes a user 
defined number of cycles. At the end, the top ranked models are reported to 
the user who can decide about the best results based on different parameters 
and not only the used fitness criteria. 

The GAs used to perform the variable selection operations in the current 
study were inspired by the approach of Leardi et al. and implemented in 
MATLAB environment [109,110,118]. 
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5. Modeling methods in QSAR 
 

 

 

 

QSAR and QSPR are based on the observations that a change in the 
physicochemical properties of molecules can be induced by varying the 
chemical structures. QSARs started to have their concrete beginning with the 
works of Hansch and Free-Wilson in the early sixties of the last century 
[119,120]. Since then, the arsenal of modeling methods applied to QSAR 
studies have been broadened by adding several multivariate chemometric 
methods which have been continuously refined during the last decades. 

QSAR’s general mathematical form is:  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑓(𝑝ℎ𝑦𝑠𝑖𝑐𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑎𝑛𝑑/𝑜𝑟 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) 

Thus, the development of a QSAR model requires three key 
components. The first two ones, described in the previous sections, are: 

- experimental data acquisition and curing 
- description of the physicochemical properties and/or chemical 

structures by a set of molecular descriptors. 

The third one is the core of QSAR modeling and it consists of a 
theoretical function based on mathematical and statistical methods to find the 
required relationship linking the molecular properties to their structural 
descriptors.  
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A multitude of prominent chemometric methods are used in QSAR 
studies. Methods considered in this work were:  

- exploratory data analysis methods such as Principal Component 
Analysis (PCA) and the Multi-Dimensional Scaling (MDS); 

- regression methods including Multiple Linear Regression (MLR) and 
Partial Least Squares (PLS); 

- classification methods such as 𝑘th Nearest Neighbors (𝑘NN), Support 
Vector Machines (SVM) and Partial Least Squares Discriminant 
Analysis (PLSDA) [121–129].  

In this thesis, most of the used techniques were implemented and used 
within the MATLAB environment. 

5.1. Unsupervised methods for exploratory data analysis 

Unsupervised learning methods are used in descriptor data analysis for pattern 
recognition without making use of the experimental response. 

5.1.1. Principal Component Analysis (PCA) 

Most of the chemical applications require multivariate data analysis. Since 
descriptors hyperspace usually encodes redundant and noisy information, it 
requires a powerful chemometric method to deal with the collinearity. PCA is 
one of the widely used tools for reducing dimensionality [130–132]. It is an 
exploratory technique used to visually estimate the structure of the multivariate 
data, detect pattern in the data as well as the presence of potential outliers. 

PCA adopts a compression technique of the correlated descriptors by 
projecting them into a new set of variables called Principal Components (PCs). 
These new orthogonal variables are linear combinations of the original 
descriptors. Since only few PCs are commonly retained, most of the dataset’s 
variability is enclosed in a lower dimensional space of orthogonal PCs. The first 
PC defines the direction of the maximum data variance, while the subsequent 
PCs describe the maximum of the remaining variance in directions which are 
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orthogonal to each others. The redundancy is, therefore, removed and most of 
the initial information is explained by the first few PCs.  

5.1.2. Multi-Dimensional Scaling (MDS) 

MDS is a useful method that reconstructs the distribution of the initial hyper-
dimensional data into a much lower space on the basis of the distances between 
the samples [121,122]. Thus the aim of MDS is to let the user to visualize the 
distances between the samples in order to have an approximate idea about the 
degree of similarity in the analyzed data. The degree of approximation in the 
low-dimensional space is explained by the residuals between the original and 
the new distances separating the samples. 

5.2. Supervised learning methods for modeling 

Unlike previously mentioned data exploratory methods, supervised learning 
methods use the experimental response being modeled. Thus, care needs to be 
taken in order to avoid over-fitting. 

The nature of the modeled response is a crucial factor in the choice of 
the method to be used. There are two types of methods:  

- classification methods handling categorical responses such as 
active/non active, toxic/non toxic or biodegradable/non 
biodegradable; 

- regression methods dealing with continuous responses such as logP 
and BCF. Nevertheless, some techniques are suitable both for 
classification and regression tasks.  

5.2.1. Regression methods 

5.2.1.1. The k Nearest Neighbors in regression 

𝑘NN is one of the simplest techniques for modeling. It makes use of the 
congenericity principle assuming that within a selected descriptors space, the 
closest compounds will have similar response.  
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The commonly used metric in 𝑘NN modeling is the Euclidean distance. 
Other metrics such as Manhattan distance and Mahalanobis distance can also 
be applied [133]. Several methods can be applied to obtain the predicted 
response for a test sample. In this work, the predictions were processed in two 
ways: 

- by averaging the observed values of the 𝑘 nearest neighbors 
- by weighting the observed values according to the distances of the test 

sample to the 𝑘 nearest neighbors. 

In this work, 𝑘 is optimized to get the best performance in cross-
validation. The 𝑘NN approach often presents good results, however, its 
predictive ability in regression can be altered in the case of high-dimensional 
data [134].  

5.2.1.2. Multiple linear regression 

MLR is a mathematical method used to find a linear relationship between the 
observed response and a number of independent variables (descriptors) as 
follows: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖          𝑖 = 1,2, … ,𝑛       

where 𝑦𝑖 is the observed response, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 are the independent 

variables for the ith sample, 𝑝 is the number of variables, 𝑛 is the number of 
samples and 𝜀𝑖 is the error of prediction. By estimating the parameters 
𝛽0,𝛽1,𝛽2, … ,𝛽𝑝 the equation of the linear model is: 

𝑦�𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯+ 𝑏𝑝𝑥𝑖𝑝 

where 𝑏0,𝑏1, 𝑏2, … , 𝑏𝑝 are the estimates of the previous parameters and 𝑦�𝑖 is 
the predicted value of the model. 

MLR is based on the Orthogonal Least Square (OLS) algorithm that 
minimizes the sum of squares of the error between the predicted and the 
observed values ∑(𝑦 − 𝑦�)2. 
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The vector of predicted values 𝒚� is obtained as following: 

𝒚� = 𝐛𝐗 

where 𝐛 is the vector of estimated parameters 𝑏0,𝑏1,𝑏2, … , 𝑏𝑝 calculated as: 

𝐛 = (𝐗′𝐗)−1𝐗′𝐲 

where 𝐗 and 𝐲 are the matrix of descriptors and the vector of experimental 
responses, respectively. 

MLR modeling is based on the assumption that the errors are a normally 
distributed random variable with constant variance. The obtained model is 
optimal when the regression estimators are unbiased, efficient, and consistent 
with a bias and variance approaching zero when the number of samples tends 
to the infinity. 

The disadvantage of this method is that collinearity between the 
descriptors highly affects the reliability of the regression coefficient estimates. 
Thus, reducing the number of included variables by removing those with 
insignificant coefficients can reduce the risk of multi-collinearity and contribute 
to enhance the reliability of predictions. 

5.2.1.3.  Partial Least Squares (PLS) 

PLS is a powerful statistical method applied in Chemometrics and other fields 
of scientific research [124]. A major advantage of this method is its ability to 

overcome the problem of singularity of (𝐗 ′𝐗) in MLR due to the number of 
columns (variables) larger than the number of rows (samples) as well as to the 
collinearity of variables. This problem is solved by decomposing 𝐗 into 
orthogonal scores 𝐓 and loadings 𝐏 as follows; 

𝐗 = 𝐓𝐏 

Then, 𝐲 is correlated to the first columns of the scores instead of the 
original variables of 𝐗. In this way, PLS includes information from both, 𝐗 and 
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𝐲 in the calculation of the scores and loadings aiming to explain the maximum 
of variance in the original variables as well as the observed response.  

The general decomposition formula of multivariate PLS is: 

𝐗 = 𝐓𝐏′ + 𝐄 

𝐘 = 𝐔𝐐′ + 𝐅 

where 𝐓 and 𝐔 are the matrices of scores of 𝐗 and 𝐘, respectively. While 𝐏 and 
𝐐 are the loading matrices. 𝐄 and 𝐅 are the matrices of residuals. The aim of 
this decomposition is to maximize the covariance of 𝐓 and 𝐔. 

There are several implementations of PLS algorithms in the literature 
giving similar results especially in the case of a single vector response but may 
differ slightly when dealing with multivariate responses [135,136]. 

In PLS regression, the components are called Latent Variables (LVs) and 
are, thereby, incorporating information from the descriptors, the experimental 
observation as well as the correlation between them. The LVs are calculated by 

SVD decomposing the cross-product of the variables 𝐒 = 𝐗 ′𝐲. 

5.2.2. Classification methods 

5.2.2.1. The k Nearest Neighbors (kNN) 

The 𝑘NN approach for classification operates similarly to regression. Assuming 
that the class probabilities are approximately uniform within its neighborhood, 
a new sample’s class is predicted according to the majority class of its 𝑘 
neighbors. However, this assumption could become invalid in the case of high-
dimensional datasets. Even though, 𝑘NN performs better in classification than 
in regression for with such high dimensionality [137]. 

After choosing the metric distance, the optimal number of neighbors can 
be determined by trying different values and comparing the errors in prediction.  
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5.2.2.2. Partial Least Squares Discriminant Analysis (PLSDA) 

PLSDA takes advantage of both methods, PLS and Linear Discriminant 
Analysis [129,138]. It first performs a dimensional reduction of collinear and 
noisy data into orthogonal Latent Variables. Then, these PLS-type LVs are used 
to make a prediction for the new investigated sample as if the observed 
response was a continuous variable. The obtained value is then compared with 
a threshold in order to predict the class of the sample. The model interpretation 
can be carried out with respect to the original variables. 

In PLS as well as in PLSDA, the choice of the optimal number of LVs to be 
selected is made using the measure of fit and validation techniques. 

5.2.2.3.  Support Vector Machines (SVM) 

SVM are a relatively new and sophisticated nonlinear learning method originally 
developed by Vapnik et al. for binary classification purposes [139–141]. 
Basically, the idea is to find an hyper-plane able to separate a multidimensional 
data into two classes. The hyper-plane should be placed in a way to maximize 
the margin to the nearest data points from the two classes (Figure 2). However, 
real data is not usually linearly separable, thus, the notion of a kernel function 
was introduced. This feature enables casting the original data into a higher 
dimensional space where the data points can be separable. The optimal hyper-
plane is determined by a number of Support Vectors (SVs). The commonly 
used kernel functions are linear, polynomial, sigmoid and radial basis functions 
(RBF). 

Although, computational difficulties could rise from such operation in 
addition to the high risk of over-fitting. Being an intuitive and theoretically 
well-founded technique, SVM introduced several parameters to reduce these 
concerns. Hence, this method was also extended to solve regression problems. 
The linear model in the high-dimensional space is given by: 

𝑓(𝐗,𝜔) = �𝜔𝑗𝑔𝑗(𝐗) + 𝑏
𝑝

𝑗=1

 



  5. Modeling methods in QSAR 
 

56 
 

where 𝑔𝑗(𝐗), 𝑗 = 1, … ,𝑝 represent a set of nonlinear transformations and 𝑏 is 
the bias term. 

In addition to the type of the kernel function, another important 
parameter is the constant 𝐶 that optimizes the compromise between the model 
complexity and the degree of tolerance to deviations larger than the insensitive 
loss function 𝜖, which is the trade-off between maximizing the margin and 
minimizing the error rate. The good performance of SVM depends on the 
suitable setting of these 3 parameters. 

The parameter 𝐶 is also important for the best fit of the model and at 
the same time to avoid over-fitting problems. It depends on the amount of 
noise in the training data and it usually varies between 1 and 10. If it’s too small 
the algorithm will insufficiently fit the training data, on the contrary, if it’s too 
large the method will tend to over-fit the data. The parameter 𝜖, on the other 
hand, controls the number of SVs. The higher 𝜖, the lower the number of 
selected SVs. These parameters can only be optimized by analyzing the data and 
applying proper measures of fit and validation techniques. 

In this work, the SVM models were calculated using the LibSVM library 
written in C programming language and developed by Chih Chang and Chih-
Jen Lin [142,143]. This library was implemented in MATLAB to be coupled 
with the GAs for the variable selection and modeling steps.  

 
Figure 2: Choosing the hyperspace with the optimal margin 
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6. Goodness of fit measures and validation 
methods 

 

 

 

 

One of the most important features of a QSAR model is its predictive ability 
and validity. This condition is also foreseen by the fourth OECD principle for 
the use of QSARs in regulatory assessment of chemicals. According to the 
OECD guidance, the validation is defined as: “…the process by which the reliability 
and relevance of a particular approach, method, process or assessment is established for a 
defined purpose” [144].  

Care should be taken while assessing the validity of QSAR models in 
order to avoid the problem of over-fitting and provide predictive algorithms. 
The optimal model is the one showing the best balance between its complexity 
and the gain in performance without modeling the noise in the data [1,145,146]. 
The problem of over-fitting can be due to the bad choice of the modeling 
technique that doesn’t properly fit the studied endpoint or the use of a high 
number of descriptors with few molecules. Another main reason could be the 
failure in selecting the suitable descriptors for a given response. The improperly 
included variables may be inter-correlated, by-chance correlated with the 
response or too many till capturing higher variance than necessary [147–150].  

6.1. Validation methods 

As a matter of fact, once a model has been developed, regardless of its type, it 
is crucial to investigate its predictive ability by means of proper validation 
methods.  
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One of the widely used approaches for this purpose is to split the 
original data into a training and a test set. The test set is usually consisting of 20 
to 25% of the whole dataset. This set of molecules is exempted from model 
calibration process, and it is used to verify the predictive ability of the calibrated 
model. The model’s true predictive ability is evaluated according to the statistics 
obtained from the external test set. Testing the model using an external 
validation set is strongly required if the model has shown a significant 
predictive performance during the modeling process.  

Another method to evaluate the model predictive performances is Cross-
Validation (CV). There are two varieties of this technique; the Leave-One-Out 
(LOO) and the Leave-Many-Out (LMO). 

The LOO approach consists of leaving out one of the compounds in the 
training set, fitting the model with the remaining compounds and then 
predicting the left-out one using the built model. This procedure is repeated for 
all the compounds in the training set using the same selected descriptors. The 
statistics are later calculated using the predicted values.  

Since LOO is omitting only one compound at a time, it provides over 
optimistic predictions [151]. This problem can be solved by applying the more 
robust LMO approach [152]. Albeit its robustness, this method is 
computationally expensive and irreproducible because it depends on the 
random selection of the left-out compounds. The 𝑘-fold cross-validation is a 
valid alternative, where 𝑘 is the number of times one group is left out and 
predicted using the fitted model. The commonly considered values of 𝑘 are 5 
and 10 with portions equal to 20% and 10%, respectively. Usually, the 𝑘 groups 
are divided using venetian blinds or contiguous blocks techniques: 

- in venetian blinds method, the test set consists of selecting every 𝑘 -th 
sample in the dataset, starting at the first sample.  

- the contiguous blocks test set consists of selecting the 𝑛/𝑘 samples in 
the dataset, starting at the first sample. 
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6.2. Regression parameters 

The quality of a model can be evaluated using two groups of statistical indices:  

- the goodness of fit parameters measuring the fitting ability; 
- the goodness of prediction parameters measuring the true predictive 

ability of a model; these are related to the reliability of prediction in the 
validation step.  

Only the parameters used in this work are presented in this section. 
However, several indices have been proposed in literature [32]. 

6.2.1. Goodness of fit indices. 

These indices are used to measure the degree to which the model is able to 
explain the variance contained in the training set. The coefficient of 
determination 𝑅2 is one of the most used parameters. It is the square multiple 
correlation coefficient given by: 

𝑅2 =
∑ (𝑦�𝑖 −𝑛
𝑖=1 𝑦�)2

∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

 

where 𝑦� is the estimated response and 𝑦� is the average observed response over 
the 𝑛 training compounds. 

𝑅2 ranges from 0 to 1. The higher this parameter is, the more fitted the 
model. 

The second mainly used parameter is the Root Mean Square Error 
(𝑅𝑀𝑆𝐸) calculated as following: 

𝑅𝑀𝑆𝐸 = �∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1

𝑛
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6.2.2. Goodness of prediction indices. 

These parameters are used in the validation step. The most important one is the 
predictive squared correlation coefficient 𝑄2. Different ways of calculating this 
parameter are available in the literature [153,154]. In this work, the following 
formula was considered: 

𝑄2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2
𝑛𝐸𝑋𝑇
𝑖=1 𝑛𝐸𝑋𝑇⁄
∑ (𝑦𝑖 − 𝑦�)2𝑛𝑇𝑅
𝑖=1 𝑛𝑇𝑅⁄

 

where 𝑛𝐸𝑋𝑇 is number of test compounds, 𝑛𝑇𝑅 is the number of training 
compounds. 

The second parameter commonly used is the Root Mean Square Error in 
Prediction (𝑅𝑀𝑆𝐸𝑃) calculated as follows: 

𝑅𝑀𝑆𝐸𝑃 = �
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1

𝑛𝐸𝑋𝑇
 

6.3. Classification parameters 

The performance of classification models was evaluated using statistical indices 
proposed in literature [32,155]. These indices are calculated from the confusion 
matrix which collects the number of samples of the observed and predicted 
classes in the rows and columns, respectively (Table 1).  

For a two-class dataset, the classification parameters are defined using 
the number of True Positives (𝑇𝑃), True Negatives (𝑇𝑁), False Positives 
(𝐹𝑃) and False Negatives (𝐹𝑁).  

Table 1: The confusion matrix in classification 

 Class A (predicted) Class B (predicted) 
Class A (observed) 𝑇𝑃 𝐹𝑁 
Class B (observed) 𝐹𝑃 𝑇𝑁 
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The most important parameter that should be maximized during the 
modeling step is the Non-Error Rate (𝑁𝐸𝑅). It is usually expressed in 
percentage and given by: 

𝑁𝐸𝑅% =
(𝑆𝑛 + 𝑆𝑝)

2
 

where 𝑆𝑛 is the sensitivity and 𝑆𝑝 is the specificity. 

The Sensitivity (𝑆𝑛), also called the True Positive Rate (𝑇𝑃𝑅) or recall, 
determines the ability of a model to correctly predict the elements of a given 
class and calculated as: 

𝑆𝑛 ≡ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The Specificity (𝑆𝑝), also called the True Negative Rate (𝑇𝑁𝑅), 
expresses the ability of the model to correctly reject the elements from a given 
class and defined as: 

𝑆𝑝 ≡ 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The Error Rate (𝐸𝑅) is also a significant parameter since it is the 
complementary value of 𝑁𝐸𝑅. Thus, it is calculated as following: 𝐸𝑅 = 100−
𝑁𝐸𝑅% 
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7. Applicability domain of models  
 

 

 

 

The validity of a QSAR model is not sufficient to consider it as adequate for 
regulatory purposes. General considerations are given in the REACH guidance 
indicate that it is essential for a QSAR estimate to be valid and applicable to the 
chemical of interest in order to assess its acceptability [2].  

 
Figure 3: The overlapping conditions for the adequacy of QSARs in regulatory purposes. 

This implies that several considerations should overlap in order to fulfill 
the adequacy condition of a QSAR model in regulatory assessing of chemicals. 
As shown in Figure 3, a QSAR model should be scientifically well founded and 
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applied within its applicability domain to produce reliable predictions. If these 
results meet the regulatory field of interest, the model is adequate. 

According to the third OECD principle, a QSAR model should be 
associated with a defined domain of applicability. This includes limitations in 
terms of types of chemical structures, physicochemical properties and 
mechanisms of action. When a model is applied within the boundaries of its 
limitations, it is expected to give reliable estimates. Conversely, using it outside 
of its applicability domain could affect the accuracy of the predicted results.  

Since there is no unique mode of action to define the applicability 
domain, several methods have been proposed in the literature [156–158]. 
Depending on the used methodology for describing the descriptor based 
interpolation space, the suggested methods can be categorized in different 
groups. The range-based methods include the bounding box, PCA bounding 
box that define the AD in a univariate way by setting an interval for each 
variable. The geometric methods such as the convex hull set an external 
delimiter for the training set as the limit of the AD. Some of the commonly 
used centroid-based approaches make use of the Leverage, Euclidean, 
Mahalanobis and City Blok distances with a user defined threshold as a warning 
value for the AD.  

Many other methods have been developed and used in QSAR studies: 
the 𝑘NN approach, the probability density distribution-based method, decision 
trees and the stepwise approach. Some of the above mentioned approaches 
have been discussed and a comparison study was conducted on different 
environmental datasets [159]. 

In this work, the mostly used approach to define the AD of the 
developed models was the Leverage approach. The leverages of a given 
descriptor matrix X are obtained from the Hat matrix H calculated as follows: 

𝐇 = 𝐗(𝐗T𝐗)−1𝐗T 

The diagonal values of H are the leverages of the different samples from 
the centroid of the dataset. According to this approach, the AD of a QSAR 
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model is delimited by a threshold value [156,157]. If a test compound has a 
leverage value higher than the cut-off it will be considered as outside the AD, 
thus, associated with low reliable prediction. The user-predefined threshold is 
generally 3 ∗ 𝑝/𝑛 where 𝑝 is the number of descriptors plus one and 𝑛 is the 
number of samples in the training set. 
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8. Multi-criteria decision making in 
model selection 

 

 

 

 

In addition to a thoroughly prepared experimental data, the quality of QSAR 
model depend on several parameters. As described in the previous sections, the 
number and type of the crucial parameters vary according to the selected 
modeling method. In order to build a model with a good compromise between 
the complexity and the predictive ability, these parameters should be optimized 
simultaneously during the variable selection step. However, feature selection 
techniques usually optimize only one parameter such as 𝑄2 in cross-validation 
for PLS regression. However, a reliable PLS model should also have a low 
number of LVs to avoid over-fitting problems. Moreover, a high number of 
outliers could affect the predictive ability of a model. Thus, ranking the models 
on the basis of only one parameter can be restrictive and could not give the 
best results. 

Since several criteria can be important for any modeling methodology, 
suitable techniques for multivariate optimization are required. In the field of 
Chemometrics, MultiCriteria Decision Making methods (MCDM) have been 
developed to deal with such problems [160–163]. These methods are able to 
perform multivariate rankings on the basis of Desirability and Utility indices, 
and make the optimal choice among the different possibilities. The Utility is 
calculated as an arithmetic mean of the parameters while the Desirability is 
defined their geometric mean. 
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The Utility Ui of each ith alternative for the non-weighted and weighted 
cases are given by: 

𝑈𝑖 =
∑ 𝑡𝑖𝑗
𝑝
𝑗=1

𝑝
, 𝑈𝑖 = �𝑤𝑗𝑡𝑖𝑗

𝑝

𝑗=1

, 0 ≤  𝑈𝑖 ≤ 1 

where 𝑝 is the number of criteria 𝑡. 

The Desirability Di of each ith alternative for the non-weighted and 
weighted cases are given by: 

𝐷𝑖 = �𝑡𝑖1𝑡𝑖2 … 𝑡𝑖𝑝
𝑝  , 𝐷𝑖 =  𝑡𝑖1

𝑤1𝑡𝑖2
𝑤2 … 𝑡𝑖𝑝

𝑤𝑝 , 0 ≤ 𝐷𝑖 ≤ 1 

The weight constraint is: 

�𝑤𝑟 = 1
𝑝

𝑗=1

 

The weights are calculated using the method of normalized weights for 
ranked criteria [164,165]: 

𝑤𝑗′ =

𝑄
𝑟𝑗𝑘
�

∑ 𝑄
𝑟𝑗𝑘
�

𝑝
𝑗=1

 

where rj is the jth criterion rank, k is a smoothing parameter and Q is defined 

as: 

𝑄 = �𝑟𝑗𝑘
𝑝

𝑗=1

= 𝑒𝑥𝑝 ��𝑘 ln�𝑟𝑗�
𝑝

𝑗=1

� 

A new approach for model ranking was developed during this study. It is 
based on the GAs for variable selection and exploiting the principle of MCDM 
methods by using the Utility and Desirability functions. The aim of this 
approach was to include all the relevant criteria in the variable selection process. 
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This approach was applied on PLS for regression. An algorithm was 
implemented in MATLAB for the purpose of the study. The variable selection 
process was performed in multiple double CV (dCV) in order to keep an 
evaluation set in each step [166]. Intuitively, the dCV is performed in two steps 
as explained in the algorithm. The included parameters for optimization were: 
Q2, the number of variables, LVs, R2for the double CV evaluation set and the 
number of outliers (nOutliers). This latter parameter is evaluated using the 
leverage approach as explained in Section II.7.  

Each criterion is independently transformed into an Utility/Desirability 
index. This step is performed by an arbitrary function which transforms the 
actual value 𝑓𝑖𝑗 of each 𝑖th alternative for the 𝑗th criterion into a value between 
0 and 1 [165]. 

The proposed algorithm is the following: 

Repetition loop: GA runs: FOR r=1 to the total number nRUNS 

(1) Split all n objects randomly into SEGTEST segments (typ. 10). 

(2) Outer loop (dCV): FOR τ = 1 TO SEGTEST 

(a) Select nTEST molecules (1 segment) & nCALIB (the other segments) 

(b) Make GA on the nCALIB molecules (Inner loop: k-fold CV, typ. 5) 

- Select a set of descriptors (nVars) optimizing {D,U}=f(Q2, LVs) 

(c) Make PLS models on the nCALIB molecules, predict the nTEST and 
calculate R2Test. 

(d) Rank chromosomes according to {D,U}= f(Q2, LVs, nVars, nOutliers, 
R2Test).                                                                                         next τ dCV 

(3) Do Stepwise forward selection on the τ dCV according to the frequency of 
selection and rank models according to {D,U}= f(Q2, LVs, nVars).      next r run      

(4) Do final Stepwise forward selection on the nRUNS according to the frequency 
of selection and rank models according to {D,U}= f(Q2, LVs, nVars). 

After each GA run and in the final stepwise forward selection, the 
models were ranked using the Utility function because the Desirability appeared 
to be much restrictive. In fact, even if only one criterion is low, the overall 
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desirability will be low as well. Also if the desirability of one criterion is equal to 
0, the overall desirability will be 0. 
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1. Introduction 
 

 

 

 

According to the first OECD Principle, a QSAR model should be associated 
with a defined endpoint. In the regulatory context, “a defined endpoint” refers 
to any physicochemical property, biological activity or environmental effect that 
can be experimentally measured under specific conditions [1]. To ensure 
reliable predictions for the endpoint being modeled, the considered datasets 
should be self-consistent and generated by homogeneous experimental 
protocols. In addition, a QSAR model can be appropriately used for regulatory 
purposes when the test guidelines used to produce the modeled data are 
specified. However this is not always feasible, especially when different sources 
are combined or proprietary databases are used [1]. 

The transparency of the endpoint being predicted by a given QSAR 
model is an essential requirement in the assessment of the validity of the model, 
which is the intent of the first OECD Validation Principle. The predictions of a 
model can be considered as reliable if its endpoint is congruent with the 
regulatory endpoint under evaluation. Since the reproducibility of 
measurements is guaranteed by standardized guidelines, QSAR models based 
on harmonized test protocols are more likely to provide compliant estimations 
with the regulatory purposes requirements [1,2].  
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Table 2: REACH regulatory endpoints associated with the OECD test 
guidelines. 

Category Endpoint 

Physicochemical Properties 

Melting Point 

Boiling Point 

Vapor Pressure 

Octanol/Water Partition Coefficient (logP) 

Water Solubility 

Environmental Fate 

Biodegradation 

Hydrolysis 

Atmospheric Oxidation 

Bioaccumulation 

Ecological Effects 

Acute Fish Toxicity 

Acute Daphnid Toxicity 

Alga Toxicity 

Long-term Aquatic Toxicity 

Terrestrial Effects 

Human Health Effects 

Acute Oral Toxicity 

Acute Inhalation Toxicity 

Acute Dermal Toxicity 

Skin Irritation /Corrosion 

Eye Irritation/Corrosion  

Skin Sensitization  

Repeated Dose 

Genotoxicity 

Reproductive Toxicity 

Developmental Toxicity 

Carcinogenicity 

Organ Toxicity  
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For regulatory assessment of chemicals within REACH, QSAR models 
are categorized according to their defined endpoints. The endpoints of interest 
to this regulation are collected in Table 2, where also the OECD test guideline 
is specified [1].  

In this work, Octanol/Water Partition Coefficient (logP) and two 
environmental fate endpoints (Biodegradation and Bioaccumulation) were 
considered. Experimental data for these endpoints were collected from reliable 
sources and therefore assumed to be produced by means of comparable 
protocols. The models were developed, validated and interpreted taking in 
consideration the five OECD principles according to the REACH regulatory 
requirements.  
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2. Octanol/Water Partition Coefficient 
 

 

 

 

The chemical interactions of a substance with its surroundings is a key feature 
for its environmental impact assessment, hence, it is one of the requirements of 
REACH regulation [3]. The behavior and fate of a chemical substance are 
mostly depending on its physicochemical properties [4]. In absence of reliable 
experimental data, non-testing methods such as QSPR estimations can be used 
to provide such required information about chemicals [3]. 

The octanol/water partition coefficient (kow), usually expressed in log 
values (logkow or logP) is a key parameter in environmental assessment of 
chemicals since it is related to lipophilicity/hydrophobicity [5–9]. It is used as 
the basic predictor in many estimation models for water solubility, 
bioavailability, bioaccumulation, toxicity/ecotoxicity and PBT 
assessment/screening [5,10–14]. In REACH regulation, providing a logP value 
is required for all tonnage bands of chemicals [2,3]. 

LogP is defined as the ratio of the concentrations of a dissolved chemical 
in two immiscible phases, octanol and water, at the equilibrium [15]. Since 
temperature can affect the results, the measurements are typically carried out at 
25 °C. 

Owing to the large number of available experimental values, robust 
QSPR models can be developed for this property. When used within their 
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domain of applicability, validated QSPR estimations for logP can be considered 
in regulatory purposes as more reliable than a single test [1].  

Several QSPR models using different methods have been developed and 
published in the literature [11,16–20]. These models and their results have been 
compared in several reviews [21,22]. 

A comparison study of different methods for predicting logP was 
published by Mannhold and Dross [22]. Later, an exhaustive overview of 
different methods for estimation of octanol/water partition coefficient as well 
as other physical properties was published by Katritzky et al. [21]. 

There are two OECD test protocols for logP, OECD Guideline 107 and 
OECD Guideline 117 [1]. These protocols consider the neutral, undissociated 
form of a chemical. However, the dissociation of ionisable substances in an 
environmentally relevant pH could affect their physicochemical properties and, 
subsequently, their environmental fate. As a result, the partition coefficient of 
the dissociated form is a different physicochemical property, referred to as 
logD, and could differ from its neutral form by a factor of 4 to 5 orders of 
magnitude [23].  

In this work, two datasets, with a significant number of molecules, were 
considered for QSAR modeling. Each dataset was processed separately using 
appropriate tools and following different modeling strategies.  

2.1.  Case study 1: the logP-1000 contest 

The aim of this study was to participate in a challenge that aimed to develop a 
predictive model for logP. The logP-1000 contest started with a first dataset of 
1000 compounds selected from the ZINC database [24–26]. This initial set was 
later extended to 1000 clusters of about 5 compounds each. The total of 5200 
compounds with unknown logP values will be predicted by the models of the 
participating groups. In addition to this contest dataset, the organizing group 
provided also a dataset to be used for fitting the models. The provided dataset 
consisted of 17233 compounds downloaded from the OCHEM online database 
[27]. 
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2.1.1. Data set up and curing 

The information provided for the compounds of the dataset included the CAS-
RN, the chemical name, the SMILES code, the logP experimental value and the 
internal identifier of the OCHEM database. The dataset was initially analyzed in 
order to check the presence of erroneous structures. 

The first analysis was carried out by means of ChemBio-Office 
(CambridgeSoft) and revealed 454 molecules associated with wrong structures. 
In particular, 204 compounds had wrong covalent bonds and 363 compounds 
had exceeding valence for Nitrogen. The dataset contained also 1648 duplicates 
and 1727 tautomers. 

Using DRAGON software, the unusual covalent bonds of the previously 
detected 204 compounds were disconnected by converting covalent bonds 
between Nitrogen and halogens (X) into the disconnected ionic form N+ X-. 
Also covalent bonds between Sodium and Oxygen as well as Potassium and 
Oxygen were changed into the ionic forms Na+ O- and K+ O- respectively. 

Then, the 454 wrong entries were checked using the following online 
databases: Pubmed Substance, Chemspider and ChemIDPlus-Advanced. First, 
the CAS-RN was used, if nonexistent or invalid then the name of the molecule 
was checked for full match. 219 structures were corrected and 235 were 
deleted. The final dataset consisted of 16998 compounds. 

2.1.2. Molecular descriptor calculation and selection 

An initial set of 3130 molecular descriptors was calculated using DRAGON 
(version 6) [28]. The considered descriptors were related to 9 DRAGON 
descriptor blocks: atom pairs, atom centered, atom type, CATS, topological, 
constitutional, functional groups, molecular properties and Muriguchi 
parameters. 

Constant, near constant and highly correlated descriptors were processed 
as explained in Section II.4.  
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Then, a univariate correlation analysis with the response (logP) was 
carried and descriptors with absolute value of correlation coefficient lower than 
0.1 were removed. A final set of 1062 descriptors was considered for the 
modeling step. 

The screened dataset was randomly divided into training (12482) and test 
(4493) sets, representing 74% and 26% of the whole dataset, respectively. 

The Genetic Algorithms (GAs) and Stepwise Forward Selection (FS) 
were used to select the appropriate molecular descriptors for the studied 
response. The regression models were developed by means of PLS and 𝑘NN 
for regression. The number of Latent Variables (LVs) for PLS and the number 
of nearest neighbors for 𝑘NN were selected maximizing the model’s predictive 

ability 𝑄2. Cross-validation was performed with 5 cancellation groups divided 
using the venetian blinds method (details in Section II.6.1). 

2.1.3. Results and discussion 

Before the proper QSAR modeling, the relationship between molecular weight 
and logP was analyzed. Most of the compounds demonstrated molecular 
weights ranging from 150 to 350 g/mol and logP values from 0 to 4. The 
distribution of molecular weights and logP values can be divided in three 
intervals: 

- 319 compounds with molecular weights ranging from 0 to 100 g/mol 
related to the lowest logP values;  

- 8396 compounds with molecular weights of 100 to 300 g/mol 
associated with logP values ranging from 0 to 4; 

- 3767 compounds with molecular weights higher than 300 g/mol 
associated with the highest logP values.  

The observed correlation between the logP values and the molecular 
weights (Figure 4) was exploited in order to build a local model using the 
mentioned molecular weight ranges. Thus, a PLS model was built using the 
molecules contained in each of the three intervals.   
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Figure 4: The correlation between logP and the molecular weights. 

Molecular descriptors were selected by means of GAs and the calibrated 
models were then validated using the test set. The best results of the different 
modeling methods (in fitting, cross-validation and test) as well as the number of 
selected molecular descriptors are collected in the Table 3. 

Table 3: QSPR models for logP using different modeling methods. 

Method No. 
Desc. 

LVs/
 𝒌 R2 𝑸𝟐CV 𝑸𝟐test RMSEC RMSEP 

CV RMSEP 

GA_PLS_1 255 20 0.85 0.84 0.86 0.75 0.78 0.75 

GA_PLS_2 156 20 0.85 0.84 0.85 0.77 0.80 0.78 
FS_PLS 65 15 0.84 0.84 0.85 0.78 0.78 0.77 

PLS_MW 65 15 0.86 - 0.86 0.74 - 0.74 

𝑘NN_1 255 5 - 0.86 0.88 - 0.74 0.68 

𝑘NN_2 30 5 - 0.84 0.85 - 0.80 0.75 

𝑘NN_3 65 5 - 0.86 0.87 - 0.74 0.71 
No. Desc.: number of descriptors. 
GA_PLS: GA coupled with PLS. 
FS_PLS: stepwise forward variable selection coupled with PLS. 
PLS_MW: GA coupled with PLS using the 3 intervals of molecular weights. 

The overall performance of the calibrated models was generally 
satisfactory,  and overfitting was likely limited, if present, since performance in 
fitting, cross-validation and on the external test set was comparable. The 
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relatively high number of descriptors in these models can be due to the fact that 
such a big dataset may cover a wide range of structurally diverse chemicals. 
Thus, a high number of descriptors and LVs for PLS were required to explain 
most of the variance. 

Two of the commonly used QSPR models for predicting logP were 
developed by Muriguchi (MlogP) and Ghose-Crippen (AlogP) [29,30]. These 
models were calculated using DRAGON software and used to benchmark the 
predictive ability of the new proposed models towards the logP-1000 contest 
dataset of 5200 chemicals.  

Table 4: Statistics of MlogP and AlogP for the training and test sets. 

Model 𝑹𝟐 RMSEC 𝑸𝟐test RMSEP 

MlogP 0.68 1.10 0.68 1.10 

AlogP 0.80 0.86 0.81 0.86 

The performance of AlogP and MlogP models are collected in Table 4. 
It is clear that AlogP performed better than MlogP for both training and test 
sets. However, the predictive ability of the new proposed models, summarized 
in Table 3, is higher than these two models from the literature. The correlation 
between the predictions obtained from AlogP and MlogP for the whole dataset 
(training and test set) is 0.88, while their correlation on the logP-1000 contest 
dataset decreased to 0.69. The difference between these two correlation values 
was unexpected and could indicate structural difference between the dataset 
used for fitting the models and that to be predicted by them. 

Three of the developed models (GA_PLS_2, FS_PLS and 𝑘NN_3) were 
selected to predict logP for the logP-1000 contest dataset, taking into 
consideration the compromise between their performance and complexity 
(number of selected molecular descriptors). These models were benchmarked 
by calculating the correlations coefficients between their respective predictions 
on the test set and the contest dataset and those predictions obtained from 
AlogP and MlogP models. The obtained results are summarized in the Table 5. 
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Table 5: Benchmarking the predictions of the selected models. 

Models  
GA_PLS_2 FS_PLS 𝒌NN3 

Test 
set 

Contest 
data 

Test  
set 

Contest 
data 

Test  
set 

Contest 
data 

MlogP 0.83 0.59 0.88 0.81 0.81 0.52 
AlogP 0.89 0.62 0.94 0.88 0.87 0.60 

According to Table 4, the predictions of the selected models showed 
higher correlation with AlogP than MlogP. This fact can be considered as proof 
of the reliability of the selected models since AlogP was considered to be more 
reliable according to Table 3. 

2.1.3. Conclusion  

The developed logP models showed similar results. In general, the three final 
selected models demonstrated better predicting ability than the two classical 
logP models (AlogP and MlogP), which were used for benchmarking the 
predictions on the logP-1000 contest dataset. 

The 𝑘NN model showed the best statistics for the training and test sets. 
The comparison study on the contest data, based on the correlation with AlogP 
and MlogP indicated better results with the PLS models. In particular, FS_PLS 
model showed the highest correlation with AlogP which is considered to be 
better than MlogP. However, it was noticed that the benchmarking models 
showed low correlation considering the predictions for the contest dataset. This 
could be due to the fact that the logP-1000 dataset includes several chemicals 
that are structurally different from those used to fit and validate the models. 
Consequently, considering both AlogP and MlogP in the evaluation of the 
predictions on the contest dataset, the FS_PLS could be selected as the best 
predictive model. 

2.2.  Case study 2: modeling PHYSPROP dataset for logP 

Unlike case study 1 where the data source was constrained, this second study 
on logP focused more on the dataset preparation in order to have a curated 
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dataset for modeling. Moreover, the previously introduced MCDM variable 
selection algorithm (Section II.8) was applied to select the best models. Since 
most of the datasets available in the literature may contain wrong entries, 
attention was paid to data screening and curation. Then, the modeling step was 
carried out in order to propose a QSAR model with a good compromise 
between the predictive ability and complexity. 

2.2.1. Data set up and curing 

The dataset was downloaded from the US-EPA (Environmental Protection 
Agency) website [31,32]. This dataset was originated from the PHYSPROP 
database [33,34]. The same dataset was used for the development of 
KOWWIN, the EpiSuite’s model for estimating logP [19]. 

The original dataset consisted of 13’445 compounds. For each 
compound, the CAS-RN, the SMILES structure, the chemical name and the 
experimental value are provided with the corresponding bibliographic 
reference. However, not all compounds  were associated with a valid CAS-RN 
since 1872 compounds were associated with a generic internal identifier that 
has the same number of digits as a CAS-RN. 

The data curation was performed using different tools in order to 
prepare a good quality dataset for modeling purposes. The software dProperties 
was used to carry out the first check [35]. Since this tool revealed 187 erroneous 
SMILES structures, further investigations were needed. The data-mining 
environment, KNIME was used to set-up a workflow which allowed different 
automatic checks of the dataset entries [36]. The developed workflow (Figure 5) 
was used to run a series of queries through the web-services of the online 
databases ChemSpider and CIR [37,38].  
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Figure 5: The KNIME workflow used to prepare the dataset. 

The available identifiers for each compound were used in a combined 
way. The performed queries are listed from the most to the less restrictive:  

- 5524 compounds were found to match the CAS-RN, SMILES and 
chemical names. 

- 6178 compounds were found to match the CAS-RN and the chemical 
names. This list overlaps with the previous one and adds 662 
compounds satisfying only the criteria of the second query. 

- 6893 compounds were found to match the CAS-RN and SMILES. 
This list overlaps with the previous one and adds 1210 compounds. 

- 6566 compounds were found to match the SMILES and chemical 
names. This list overlaps with the previous one and adds 941 
compounds. 

- 4168 compounds found to match the SMILES and chemical formula 
were added to the previous list. 

The resulting dataset consisted of 12505 molecules with checked 
molecular structures. The obtained SMILES were used to retrieve the missing 
CASRNs from ChemSpider database and 407 valid identifiers were found. 

79 disconnected structures were removed from the dataset, thus, 11’426 
compounds remained for molecular descriptor calculation and modeling. 
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2.2.2. Molecular descriptors calculation 

DRAGON software was used to calculate 2469 molecular descriptors [28]. In 
order to build easily interpretable models, only 2D descriptors were considered. 
The calculated descriptors belong to different DRAGON blocks: 
Constitutional indices, Ring descriptors, Topological indices (except E-state 
indices sub-block), Walk and path counts, Connectivity indices, Information 
indices, ETA indices, Functional group counts, Atom Centered fragments, 
Atom-type E-state indices, CATS 2D and 2D Atom Pairs.    

Then, the number of descriptors was reduced by screening the 
descriptors on the basis of constant, near constant and highly correlated values 
as explained in Section II.4. The remaining 1167 descriptors were saved for the 
variable selection and modeling step. 

2.2.3. Results and discussion 

A test set of 3110 compounds corresponding to 25% of the whole dataset was 
selected using the venetian blinds technique. The remaining 9316 compounds 
were considered as training set on which the variable selection step was 
performed. 

The previously described MCDM variable selection based on the GA 
coupled with PLS was performed on the training set. In each run, 10 double 
Cross-Validations (dCV) of 5 cancellation groups were performed while the 
10% of the training set was left out as a validation set for the best model of the 
dCV. 

During the GA evolutions, 5 parameters were optimized, the inner 𝑄2 5-

fold Cross Validation (5-f CV) and outer 𝑄2 Cross Validation (dCV) were 
maximized while the number of variables, the number of LVs and the number 
of outliers were minimized as explained in Section II.8. The rankings of these 5 
criteria and their corresponding weights are listed in Table 6. 
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Table 6: Ranks and weights of the considered parameters. 

 𝑸𝟐 5-f CV 𝑸𝟐 dCV 
Number of 
descriptors 

LVs 
Number 

of outliers 
Ranking 1 2.5 3.5 3.5 4.5 
Weight 0.683 0.171 0.076 0.043 0.027 

During the stepwise forward selection performed after each run and at 
the end of the procedure, 3 parameters were optimized: 𝑄2 5-fold CV, the 
number of variables and the number of LVs. The corresponding rankings of 
the 3 criteria used for calculating their weights were 1, 2.5 and 2.5, respectively. 
The models were ranked on the basis of the score calculated by the Utility 
function (U). The Desirability function (D) was also reported. The smoothing 
parameter k for calculating the weights was equal to 2. 

The maximum number of descriptors and LVs was fixed to 60 and 10, 
respectively. During the inner 5 fold CV, all the allowed LVs were tested and 
the model showing the best compromise between the used LVs and 𝑄2 
according to the U score was retained. 

Since the calculations were computationally expensive due to the big 
training set and the high number of descriptors, the variable selection 
procedure was performed in 3 steps. The algorithm was first executed for 20 
runs in order to reduce the list of descriptors. In the second step, 331 retained 
descriptors were subject to 20 runs to select the most pertinent subset. Finally, 
the 150 descriptors which were the most frequently selected during the second 
step were included in the last selection step of 20 runs. 

Table 7 summarizes the optimized models obtained during the 10 dCVs 
performed in the first run of the GA and their corresponding parameters used 
to calculate the U score. The descriptors which were selected at least twice in 
the 10 models were included in the stepwise forward selection according to 
their frequency of selection. The obtained models from this first run are 
summarized in Table 8. 
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Table 7: The 10 dCV performed during the first GA run of the third step. 

dCV U 𝑸𝟐 5-f CV 𝑸𝟐 dCV No.  descs. LVs No. outliers 
dCV1 0.78 0.81 0.78 39 4 25 

dCV2 0.79 0.82 0.81 41 4 48 

dCV3 0.78 0.79 0.78 36 3 34 

dCV4 0.76 0.76 0.77 33 3 33 

dCV5 0.79 0.83 0.84 46 5 30 

dCV6 0.79 0.81 0.78 34 4 46 

dCV7 0.78 0.80 0.79 38 3 50 

dCV8 0.79 0.82 0.84 40 5 27 

dCV9 0.78 0.81 0.82 39 4 28 

dCV10 0.78 0.80 0.80 34 4 34 

Model M6 had the highest U score and was, therefore, retained as the 
best model of the first run. Table 8 reports also the Desirability (D) score that 
showed the highest value for the same model as U. Since the maximum of the 
descriptors to be included in the models was set to 60, models with descriptors 
exceeding this number had a D score equal to 0. 

Table 8: Nine models obtained by means of stepwise forward selection 
performed after the 10 dCVs of the first GA run. 

Parameter M1 M2 M3 M4 M5 M6 M7 M8 M9 

Descriptors 1 2 3 4 7 15 33 64 111 

𝑄2 0.16 0.28 0.43 0.45 0.48 0.79 0.81 0.83 0.84 

Selection 10 9 8 7 6 5 4 3 2 

LVs 1 1 1 2 2 2 4 4 4 

U 0.36 0.45 0.56 0.57 0.58 0.81 0.77 0.73 0.73 

D 0.25 0.38 0.52 0.54 0.56 0.81 0.76 0 0 
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The same procedure was repeated for 20 runs and the best models were 
saved. Figure 6a showed the frequency of selection of descriptors, while Figure 
6b showed the 𝑄2 CV and the corresponding U score of the 20 obtained 
models. From these descriptors, those having a frequency of selection of at 
least 2 over 20 were included in the last stepwise forward selection.   

 

Figure 6:  The frequency of descriptors’ selection during 20 runs (a) and the obtained 
models (b) and their parameters 𝑸𝟐 (red points) and U scores (blue points). 

According to Table 9 and Figure 7, the best model resulting from the last 
stepwise forward selection is model M16 that is associated with the highest U 
score. It represents the best compromise between performance and complexity 
since it included 17 descriptors and only 2 LVs for a 𝑄2 CV equal to 0.8. 

a 

b 
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Figure 7: The evolution of 𝑸𝟐 (red line) and U (blue line) during the final Stepwise 
forward selection. The histogram represents the frequency of selection of the descriptors in 
percentage over the number of total runs. 

All the descriptors of M16 were included at least 7 times in the best 
models of the 20 GA runs (Table 9).  

Table 9: Evaluation of models resulting from the stepwise forward selection. 

Parameter 
M 
10 

M 
11 

M 
12 

M 
13 

M 
14 

M 
15 

M 
16 

M 
17 

M 
18 

M 
19 

M 
20 

Desc. 4 5 6 7 9 11 17 18 23 26 41 
𝑄2 0.45 0.47 0.47 0.53 0.77 0.77 0.80 0.79 0.79 0.80 0.83 
Nb. Select. 20 19 13 12 10 9 7 6 5 4 3 
LVs 2 2 2 2 2 2 2 2 2 2 3 
U 0.57 0.58 0.58 0.63 0.80 0.80 0.81 0.80 0.79 0.79 0.77 
D 0.54 0.56 0.55 0.61 0.80 0.80 0.80 0.79 0.79 0.79 0.75 
Desc.: the number of descriptors. 
Nb. Select.: the number of selection of the added descriptors in the 20 runs. 

The selected descriptors, listed in Table 10, are simple 2D descriptors 
encoding information about the size of molecules, functional groups and 
fragments which can be related to the lipophilicity of chemicals.  
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Table 10: The molecular descriptors included in the model M16. 

Symbol Description Block 

B07[C-X] Presence/absence of C - X at topological distance 7 2D Atom Pairs 
B05[C-X] Presence/absence of C - X at topological distance 5 2D Atom Pairs 

H-046 H attached to C0(sp3) no X attached to next C 
Atom-centered 
fragments 

O-058 =O 
Atom-centered 
fragments 

C-006 CH2RX 
Atom-centered 
fragments 

C-001 CH3R /CH4 
Atom-centered 
fragments 

O-056 alcohol 
Atom-centered 
fragments 

CATS2D_
01_LL 

CATS2D Lipophilic-Lipophilic at lag 01 CATS 2D 

nX number of halogen atoms 
Constitutional 
indices 

nHM number of heavy atoms 
Constitutional 
indices 

RBN number of rotatable bonds 
Constitutional 
indices 

nHDon number of donor atoms for H-bonds (N and O) 
Functional 
group counts 

nHAcc number of acceptor atoms for H-bonds (N,O,F) 
Functional 
group counts 

nCbH number of unsubstituted benzene C(sp2) 
Functional 
group counts 

nCb- number of substituted benzene C(sp2) 
Functional 
group counts 

nBnz number of benzene-like rings 
Ring 
descriptors 

PCD 
difference between multiple path count and path 
count 

Walk and path 
counts 
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The selected best model was finally validated by means of the external 
test set that was not used during the modeling step. The regression 
performance of this model in fitting, CV and prediction on test set are 
summarized in Table 11. 

Table 11: Statistics of model M16. 

Fitting 5-fold CV Test 

𝑹𝟐 RMSEC 𝑸𝟐 RMSECV 𝑸𝟐 RMSEP 
0.80 0.82 0.80 0.82 0.81 0.80 

On the basis of the results shown in Table 11, model M16 can be considered to 
be robust since the statistics in fitting, cross validation and test are comparable. 

The applicability domain of the model was investigated by means of the 
leverage approach. The number of outliers detected in the test set was 86. 
These compounds did not affect the statistics of the model. This low number 
of molecules outside the AD could be a result of the optimization of the 
number of outliers during the modeling step. Consequently, it can be concluded 
that the selected descriptors are an optimal subset to cover a wide range of the 
chemical space of the training set.  

2.2.4. Conclusion 

The developed MCDM-GA algorithm was able to select the best subset of 
descriptors by optimizing all the important parameters of the PLS method in a 
weighting scheme. The performed procedure leaded to a QSPR model with 
good compromise between the performance and the complexity. The utility of 
the final stepwise selection according to the frequency of the descriptors is to 
include all the gathered information from the different GA runs.  

Although the size of the dataset and the high variance it contained, the 
statistics of the built model were satisfactory for a global model. In comparison 
with the first study in the framework of the logP-1000 contest (see Section 
III.2.1), the selected final model required a much lower number of descriptors 
and latent variables for a small difference in the predictive ability.  
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3. Bioaccumulation 
 

 

 

 

The bioaccumulation of a chemical substance in aquatic organisms is a crucial 
information for understanding its environmental behavior. The increase of 
concentration of a chemical in the tissues due to its accumulation over long 
term exposure may cause toxic effects and transfer through the food web 
leading to biomagnification.  

Consequently, for REACH it is a relevant information at all supply levels 
and it is a requirement for substances manufactured or imported in quantities 
of 100 ton/year or more. This information is also used in chemical safety 
assessment and food chain exposure as well as PBT classification [39]. For 
these reasons, REACH encourages the establishment of bioaccumulation data 
although below the requirement tonnage and the use of prediction techniques 
such as QSARs as alternatives to animal testing. 

3.1.  Definitions  

In the literature, there are several valid definitions describing the accumulation 
of chemicals in biota. In common terms, it is the result of the 4 phases a 
substance goes through in an organism: absorption (uptake), distribution, 
metabolism and excretion (ADME). The elimination of chemicals in aquatic 
organisms is processed by diffusive transfer across intestinal walls and gill 
surfaces or biotransformation to more easily excreted metabolites [40,41].  
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Bioconcentration is a term referring to the accumulation of a substance 
in an aquatic organism. The BioConcentration Factor (BCF) of a chemical is 
the ratio of its concentration in the tissues of an organism over its 
concentration in water at the steady state as following: BCF = Co Cw⁄  

where BCF is the bioconcentration factor (L/kg), Cois the chemical 
concentration in the whole organism (mg/kg, wet weight) and Cwis the 
chemical concentration in water (mg/L). 

The BioAccumulation Factor  (BAF) is expressed as the ratio of the 
concentrations of a chemical in the organism tissues and the surrounding 
medium at equilibrium. It considers the uptake from all the environmental 
sources including water, food and sediments.  

The BioMagnification Factor (BMF) measures the accumulation of chemical 
substances via the food chain. It is expressed by the ratio of the concentrations 
of the substance in the predator and the prey: BMF = Co/Cd 

where BMF is dimensionless, Co is the steady-state chemical concentration in 
the organism (mg/kg), Cd is the steady-state chemical concentration in the diet 
(mg/kg). 

The concentrations should be expressed on a wet weight basis. They may 
also be normalized on the basis of the lipid content [39]. 

3.2.  Assessing bioaccumulation by QSARs 

QSAR modeling is one of the most pertinent non testing methods accepted 
within REACH. Validated models for assessing bioaccumulation could provide 
relevant and reliable predictions on the chemicals of interest for the regulatory 
purposes. 

Different approaches for modeling the bioaccumulation factors have 
been proposed and reviewed in the literature [41–43]. 
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The most important approaches can be divided in 2 categories according 
to the used descriptors: models based on experimental descriptors and models 
based on theoretical descriptors.  

In all cases, attention should be paid when merging datasets obtained 
from different experimental conditions because it can affect the model’s 
predictions [44]. 

3.2.1. QSAR models based on experimental descriptors 

LogP is commonly used as a simple estimator for bioaccumulation exploiting 
the correlation between BCF and the hydrophobicity of chemicals. The 
mechanistic interpretation of such relationship can be the analogy of the 
partition process between the lipid tissues and water as a passive diffusion 
through gill membranes in the aquatic organisms to its simulation in the logP 
experiments [39].  

Several logBCF/logP relationships have been proposed for specific 
chemical classes, such as polycyclic hydrocarbons, while many others were 
developed for diverse classes of chemicals [45–51]. Some of these models have 
already been used in regulatory applications of a number of chemicals [39]. 

Linear models based on logP provide acceptable estimations of the BCF 
for non ionic and slowly metabolized chemicals. However, since the range of 
logP values may be too large, this correlation is valid only for logP values 
varying from 1 to 6 and breaks down for more hydrophobic compounds [52]. 
The BCF values of such compounds are lower than the predictable limit of the 
correlation hypothesis and this is due to several reasons including the low 
aqueous solubility leading to low bioavailability, failure in reaching the steady 
state in the case of large molecules in addition to metabolism and degradation 
processes [44,52].  

More advanced approaches have been proposed to overcome this 
problem. Bilinear models and polynomial relationships have been developed 
for logP values ranging from 1.12 to 8.6 [49,53]. Another logP based approach 
was developed for the EpiSuite’s model BCFWIN. It suggested the use of 
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different fragments for each group of chemicals in multi-logP ranges models 
with correction factors to improve the accuracy of the global model [7].  

However, the logP based predictions for high hydrophobic compounds remain 
uncertain for regulatory use [39]. 

Another experimental descriptor correlated with BCF is the aqueous 
solubility (S) which is highly, negatively, correlated with the previous descriptor. 
Although it is less extensively used than logP, several models for estimating 
BCF were based on this physicochemical property [54–57]. As for the previous 
experimental descriptor, BCF models based on S may have accuracy problems 
for specific chemical groups [57]. 

3.2.2. QSAR models based on theoretical molecular descriptors. 

The experimental descriptors, such as logP and S, were selected prior to the 
modeling procedure in order to fit a predefined mechanistic interpretation of 
the mode of action of the training set compounds. In addition to the explained 
drawback of such hypothesis that could not be valid for some groups of 
chemicals, these approaches are facing another problem which is the lack of 
experimental input data for the structures to be predicted. 

To overcome these limitations, the use of theoretical molecular 
descriptors which can be calculated for any chemical structures was proposed 
in the literature. Using statistical methods, different classes of molecular 
descriptors were correlated with the bioaccumulative potential of chemicals 
including molecular connectivity indices, solvation energy, molecular fragments 
and quantum chemical descriptors [58–62].   

Theoretical descriptors avoid the problem of variability encountered 
with experimental descriptors. However, the models proposed in literature for 
mixed groups of chemicals are not always associated with a defined applicability 
domain which is a requirement for the regulatory applications [1]. 
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3.3.  Case study: QSARs for assessing bioaccumulation 

In order to comply with the regulatory requirements for the assessment of the 
environmental behavior of chemicals, cautious approaches are needed. The lack 
of input data can be avoided by the use of theoretical descriptors, which are 
independent of any experimental testing.  

The aim of this study was to develop theoretical descriptors-based 
QSAR models for the assessment of bioaccumulation. The models were 
specifically built for the chemical group of interest to avoid any extrapolation of 
the applicability domain. 

3.3.1. Polybrominated diphenyl ethers (PBDEs) 

During the last decades, Polybrominated diphenyl ethers (PBDEs) were the 
most commonly used group of brominated flame retardants (BFRs). These 
chemicals were used in textile and electrical equipment industries as additives to 
polymers and resins [63,64]. Since they are not bonded to plastics, these 
pollutants are easily released to the environment during the manufacture phase, 
while the consumers are using the products and continue to leak out of the 
wastes that constitute the major diffuse source of pollution [64].  

PBDEs are known for their long range atmospheric transport, in fact, 
they are usually detected in different geographical regions distant from their 
original sources [65]. Because of their toxicity, persistence and potential for 
bioaccumulation these pollutants were included in the OSPAR list of chemicals 
for priority action and some of them were added to the list of Stockholm 
convention for POPs [64,66]. 

Depending on the number and positions of the bromine atoms on the 
two phenyl groups, there are 209 possible congeners. In a similar way as for 
Chlorobiphenyls (CBs), the PBDE congeners are numbered according to the 
International Union of Pure and Applied Chemistry (IUAPAC) nomenclature. 
Similar toxic properties have also been notices between CBs and PBDEs [67–
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69]. However, the second group of chemicals are more lipophilic than their 
corresponding chlorinated compounds [70]. 

3.3.2. Results of PBDEs bioaccumulation models 

The aim of this study was to assess the bioaccumulation of PBDEs by means 
of QSAR modeling [71]. However, bioaccumulation is a complex biological and 
environmental procedure involving a multitude of factors. Hence, modeling 
such an endpoint can be compromised by the possible biotransformation of 
these compounds. In this work, attention was paid to the metabolism of some 
BDE congeners by debromination which can affect the reliability of the 
predictions. 

The modeling procedure of this study was achieved in 3 steps 
corresponding to the 3 factors (BCF, BAF and BMF), which are usually used to 
assess bioaccumulation. Different regression methods were applied and several 
models were compared. For each one of the 3 factors, the model presenting the 
best compromise between performance and simplicity was selected. Since the 
aim of the study was to propose reliable models for a maximum number of 
BDEs, much attention was paid to the applicability domain of the developed 
models. The complete study can be found in the published article provided in 
the attached Annex I. 
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4. Biodegradability 
 

 

 

 

The transformation of a chemical substance in the environment by degradation 
is an important process influencing the long term exposure to pollutants. The 
degraded chemical can give stable and/or toxic products. Hence, understanding 
this process leads to better risk assessment of adverse effects on biota. 
Degradation is abiotic or non-biological when it involves only physicochemical 
reactions. While biotic degradation is a biological process known as 
biodegradation and can occur in aerobic or anaerobic conditions depending on 
the presence/absence of oxygen. 

Information on biodegradability of chemicals may also be used in 
classification and labeling within the persistency assessment (PBT/vPvB). In 
the literature, there are several experimental datasets for degradation rates of 
chemicals. The most applicable experimental conditions for regulatory purposes 
are based on the standardized OECD guidelines such as OECD 301, OECD 
303, OECD 111, OECD 308 and OECD 309. 

Within the context of REACH, biodegradability is an endpoint of high 
interest for the regulation of chemicals [72]. Starting from a volume of 
production of 1 ton/year, the registration dossier should include information 
on the ready biodegradability of the substance since the exposure potential 
increases with the volume [72]. However, independently from the tonnage 
trigger, all sources of information can be considered for the risk 
characterization including non-testing predictive methods such as QSARs [72]. 
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4.1.  QSARs for assessing biodegradability of chemicals. 

Biodegradability can be computationally assessed in a quantitative or a 
qualitative way. Several models have been proposed in the literature for both 
types. A comprehensive review of biodegradability models was published in the 
literature [73]. Most of these models were derived from a dataset consisting of 
894 compounds assessed by the Japanese Ministry of International Trade and 
Industry (MITI). 

The EpiSuite’s probability program BIOWIN is one of the commonly 
used tools that provide estimations of the biodegradability under aerobic 
conditions with mixed cultures of microorganisms [74]. 

CATALOGIC is a less known quantitative model for assessing 
biodegradability based on a mechanistic approach. It predicts the Biological 
Oxygen Demand (BOD) and the microbial biodegradation CO2 production. It 
provides also an attempt to the metabolic pathways and the plausible 
biodegradation products that may arise [75]. 

TOPCAT, which is a commercial suite for toxicology predictions, also 
includes a module for quantitative assessment of aerobic biodegradability. It 
consists of 4 models applicable on specific classes of chemicals [76]. 

The list can be extended to several other models such as the commercial 
software MULTICASE for ecotoxicity and TOXTREE which is a free decision 
tree based tool [77,78]. Both of these models are based on molecular fragments 
and structural alerts. 

4.2. Summary of the published study on biodegradability 

The aim of this work was to apply advanced modeling methods in order to 
build QSAR models with high predictive ability to contribute to the 
implementation of REACH regulation. The used classification methods were: 
𝑘NN, PLSDA and SVM as well as consensus modeling. Attention was paid to 
the screening and preparation of the dataset for the modeling steps. The study 
was extended by an analysis of the used molecular descriptors and their 
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relationship with the modeled endpoint, based on information retrieved from 
the literature. In particular, the newly used molecular descriptors for modeling 
biodegradability, such as the matrix-based descriptors, were further explained 
by means of simple MLR models involving classical interpretable descriptors 
encoding information such as molecular branching and size [79]. 

More details can be found in the published article of the study provided 
in the attached Annex II. 

4.3.  Substructural keys for predicting biodegradability 

This study aimed to evaluate the ability of some substructural descriptors to 
predict the  biodegradability. More details on the used dataset for this purpose 
can be found in the published article provided in the Annex II.  

This QSAR study used only binary descriptors based on several 
structural keys calculated by PADEL and SubMat (Table 12). For this purpose, 
a 𝑘NN routine using binary descriptors was implemented in MATLAB. The 
similarity indices Jaccard-Tanimoto (JT) and Consonni-Todeschini (CT4) were 
used for calculating the binary distances (1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦) [80]. The best 
QSAR models obtained in this first step are summarized in Table 10. All 
models were validated with 5 cancellation groups and then using the test set. 
The classification performance of the models was evaluated by means of error 
rate, class specificity (Sp, correctly predicted ready biodegradable) and 
sensitivity (Sn, correctly predicted non ready biodegradable). The statistics of 
the best obtained models were comparable in cross-validation (5f-CV) and 
different for the test set. However, the 166 MACCS keys calculated by PADEL 
seemed to have more accurate predictions on the test set with the lowest ER 
equal to 15.2%. Despite the amount of information encoded into the 4860 
structural keys, Klekota showed average performance on CV and test set.   

The published models in the previously mentioned study based on the 
DRAGON descriptors performed better than the different used substructural 
keys [79]. 
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Table 12: The selected 𝒌NN models using different combinations of structural 
keys and distance measures. 

4.4.  Predicting biodegradability from the BOD values 

This modeling approach aimed to make a biodegradability classification based 
on the BOD values. First regression models were built in order to predict the 
BODs, then the compounds were categorized using the threshold of 60%. 
Compounds with BODs lower than 60% are considered as NRB while those 
exceeding this threshold were considered as RB. The 𝑘NN in regression was 
used in both weighted and non-weighted versions as explained in Section 
II.5.2.1. The used metric distances were the Manhattan, Minkowski and 
Euclidean. 

Several blocks of DRAGON descriptors were calculated, then GA was 
applied in order to select the most appropriate subsets. The parameter 𝑘 was 

optimized, from 1 to 10, in order to get the best 𝑄2 in 5-fold CV.  The models 

with the best 𝑄2 CV were selected. Their statistics were calculated also for the 
test set and summarized in Table 13.  

For this dataset, the Euclidean distance showed the best results. Thus, 
only the models using this distance were reported in Table 13. 

Structural 
keys 
(number) 

Distance 𝒌 
5f-CV Test 

ER 
CV 

Sp Sn 
ER 
test 

Sp Sn 

Submat 
(1365) 

JT 10 0.196 0.754 0.854 0.184 0.708 0.925 

MACCS 
(166) 

JT 8 0.198 0.718 0.886 0.152 0.806 0.890 

Padel-
E_State (79) 

CT4 2 0.201 0.771 0.826 0.256 0.667 0.822 

Klekota 
(4860) 

JT 4 0.205 0.775 0.816 0.179 0.806 0.836 

Pubchem 
(881) 

CT4 10 0.208 0.754 0.830 0.204 0.750 0.842 
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Table 13: Statistics of weighted and non-weighted 𝒌NN regression models. 

Model Descs. 𝒌 
CV Test 

non-weighted weighted non-weighted weighted 

𝑸𝟐 RMSEC 𝑸𝟐 RMSEC 𝑸𝟐 RMSEP 𝑸𝟐 RMSEP 

1 24 8 55.9 32.55 58.3 31.67 45.6 37.39 45.6 37.39 
2 38 10 54.6 33.04 57.2 32.08 46.0 37.24 47.3 36.78 
3 42 10 53.8 33.33 56.6 32.29 46.4 37.08 47.9 36.57 
4 49 8 53.8 33.32 56.4 32.36 46.2 37.18 46.9 36.94 
5 15 6 52.9 33.64 55.1 32.84 47.9 36.60 49.5 36.02 

Desc.: the number of included descriptors. 

The statistics of the 5 models were not very high compared to usual 
regression models. However, when the predictions of the 1st model, which 
showed the best 𝑄2, were plotted against the experimental BOD values (Figure 
8), the majority of the compounds seemed to be assigned to their correct 
classes. 

Figure 8 is, indeed, divided into 4 sections by the BOD threshold of 
60%. The upper left square contains the NRBs predicted as RBs, the dots in 
lower left section represent the correctly predicted NRBs while the correctly 
predicted RBs are in the upper right section leaving  the  wrongly  assigned RBs 
to the lower right side. It is clear that the ER in the compounds assigned as RBs 
is higher than NRBs. 

 

Figure 8: Predicted versus observed BOD values of the training set (black points) and test 
set (red points). 
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The predicted BOD values were after that used to make a classification 
of the training and test compounds using the predefined threshold. The results 
of the classification procedure are summarized in Table 14.  

Table 14: Statistics of weighted and non-weighted 𝒌NN classification models. 

Model 
CV Test 

non-weighted weighted non-weighted weighted 
ER Sp Sn ER Sp Sn ER Sp Sn ER Sp Sn 

1 0.160 0.761 0.919 0.145 0.789 0.922 0.156 0.750 0.938 0.159 0.750 0.932 
2 0.155 0.778 0.911 0.138 0.806 0.917 0.163 0.764 0.911 0.176 0.736 0.911 
3 0.153 0.785 0.910 0.143 0.799 0.915 0.159 0.750 0.932 0.159 0.750 0.932 
4 0.158 0.768 0.917 0.149 0.785 0.917 0.156 0.764 0.925 0.149 0.778 0.925 
5 0.165 0.746 0.924 0.159 0.757 0.926 0.149 0.778 0.925 0.152 0.778 0.918 

Albeit the average statistics in regression, the classification performance 
was acceptable compared to the previously developed models using the 
structural keys (Table 12). In particular, Model 1 and Model 5 showed 
interesting performances in addition to low numbers of descriptors. 

The ER for the weighted predictions showed a better performance in 
CV but it did not follow the same behavior for the test set. Hence, it can’t be 
concluded which method is performing better. It can also be noted that the 
sensitivity and specificity are not balanced as it is supposed to be for a good 
model that accurately predicts both classes. As noticed in Figure 8, all 5 models 
confirmed that the NRB compounds of this dataset are easier to predict than 
RBs. 



 

117 
 

 

 

 

 

5. Applicability domain of QSARs 
 

 

 

 

Defining the applicability domain of QSAR models is the third OECD 
principle and is one of the requirements for the predicted results to be used for 
regulatory purposes.  

The AD is defined by the chemical space covered by the training set of 
the model. This is equivalent to the descriptor space that describes the 
structures of the used compounds. Thus, the applicability of a model is limited 
to the structurally similar compounds to the training set. The model’s estimate 
is considered reliable when the chemical in query is interpolated within the AD. 
Any extrapolation of that defined space is associated with lower reliability in 
prediction. 

Different AD approaches have been proposed in the literature [81–83]. 
Depending on the adopted methodology in characterizing the interpolation 
descriptor space, the approaches discussed in this study can be categorized into 
range-based and geometric methods, distance based methods and probability 
density distributions. 

5.1.  Different approaches for defining the AD 

These approaches differ by the way the delimiters of the training set’s 
descriptor space is defined [81]. 



 5. Applicability domain of QSARs 
 

118 
 

The simplest method is called the Bounding Box and is based on the 
range of individual descriptors. It considers that a compound is inside the AD 
only if its descriptors values are falling between the minimum and the 
maximum values of the corresponding descriptors of the training set. Another 
variety of the same approach considers the ranges of the principle components 
of a PCA instead of the original descriptors.  

Convex Hull is a geometric approach aiming to define the AD by the 
smallest convex space that can enclose the whole training set. This approach is 
similar to the range based since it defines only the external delimiters of the 
chemical space independently from the data distribution [81]. 

The most commonly used approaches are distance based. The concept 
of these methods is similar to that of the previously defined leverage approach. 
It consists of measuring the distance separating a query data-point to the center 
of the training set, then compares it with a predefined threshold distance. If the 
test compound is less distant than the cut-off it can be considered inside the 
AD of the model. These approaches are considering that the further the test 
compound is from the center of the training set the less reliable the prediction 
is. The most usual distance measures employed for this purpose are 
Mahalanobis, Manhattan and the Euclidean distances. 

Another approach tested in this work was the probability density 
distribution method. It consists of estimating the probability density and 
identifying the highest density region of the dataset. The created potential is at 
its highest value at each compound of the training set and decreases with the 
distance [81]. 

Each approach has its advantages and drawbacks. Even though, the 
behavior of an AD approach depends on the used model and the dataset it was 
applied on. The number of the detected compounds outside the AD is also a 
result of the predefined parameters. Consequently, it is up to the model 
developer and user to define the most appropriate approach to use for the 
specific model under evaluation. 
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5.2.  Summary of the published study on the AD approaches 

The aim of this study was to provide a comparison between different 
approaches for defining the applicability domain. In this work, some of the 
previously introduced approaches, in addition to few other ones, were defined 
and their adopted algorithms explained. Then the selected approaches for the 
study were evaluated and compared varying their thresholds [84].  

The complete study is published and the article is provided in the 
attached Annex III.  
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6. Structure-activity landscapes 
 

 

 

 

According to the congenericity principle, structurally similar compounds are 
assumed to be associated with similar activities. However, the activity landscape 
of QSAR datasets is not always as smooth as thought. Similar molecules may 
have different activities leading to uneven landscape with Activity Cliffs (ACs). 
The presence of ACs in a given dataset can raise several problems for QSARs. 
The difference between the SAR landscapes was compared by Maggiora (2006) 
to the difference between “the gently rolling hills found on the Kansas prairie” and “the 
rugged landscapes of Utah’s Bryce Canyon” [85]. 

6.1. The Structure-Activity Landscape Index (𝐒𝐀𝐋𝐈) 

The first index for assessing the activity cliffs in a dataset was proposed by 
Maggiora (2006) and named the Structure-Activity Landscape Index (SALI) 
[85]. Later several different studies using the SALI index and graphical methods 
for characterizing the activity landscapes have been published [86–94].  

According to Maggiora (2006), ACs are expressed by the ratio of the 
difference in activity of two compounds over their “distance” in the chemical 
space [85]. Activity cliffs are described in terms of the Structure-Activity 
Landscape Index (SALI) as follows:  

𝑆𝐴𝐿𝐼𝑖𝑗 =
�𝐴𝑖 − 𝐴𝑗�

1.01 − 𝑠𝑖𝑚(𝑖, 𝑗)
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where 𝐴𝑖and 𝐴𝑗 are the activities of the 𝑖th and the 𝑗th molecules, and 

𝑠𝑖𝑚(𝑖, 𝑗) is the similarity coefficient between the two molecules.  

Figure 9 shows an example of the activity landscape according to the 
SALI index using the Euclidean distance. The dataset used for the plot 
consisted of 49 points obtained from two simulated variables (X) and a 
simulated activity (Y). The points placed in the 2D space and the responses 
were chosen in a way to create activity and similarity cliffs. The 3D symmetric 
plot vaguely emphasized the (bright) regions in the dataset associated with high 
activity cliffs. In particular, two regions can be noticed: one is corresponding to 
the points 30-40 with the points 1-15 while the second one is corresponding to 
the points 40-49 with the points 20-40. 

 

Figure 9: The activity cliffs of the simulated dataset using SALI. The 𝒙 and 𝒚 axis 
represent the number of samples while the 𝒛-axis represents the difference in activity. 
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6.2. Graphical methods for characterizing SAR landscapes  

6.2.1. The Structure-Activity Similarity (SAS) map 

One of the widely used methods to graphically explore the activity landscape is 
the Structure-Activity Similarity (SAS) map where activity similarity and 
structural similarity for each pair of compounds are plotted [95–97]. An 
example of the SAS map applied on the previously mentioned simulated dataset 
is given in Figure 10. 

The SAS map can be divided in four main regions (Figure 10). Pairs 
located in region I are characterized by low activity similarity and low structural 
similarity. Pairs with low activity similarity and high structural similarity are 
located in region II and therefore pairs of compounds in this region have a 
discontinuous SAR (activity cliffs). Data points located in region III are 
associated with low structural similarity and high similar activity; therefore this 
region is affected by structural cliffs. Finally, region IV identifies pairs of 
compounds with high structural similarity and high activity similarity and 
therefore correspond to continuous SAR. 

 

Figure 10: SAS map applied on the simulated dataset using the Euclidean distance. 
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6.2.2. The Patterson plot 

The Patterson plot is a method to graphically investigate the structurally similar 
compounds and their relative activity similarity [98]. As in the SAS map, the 
points in the Patterson plot represent the pairs of molecules in the dataset. The 
absolute differences in activities of the pairs of molecules are plotted in 
function of the distances between them in the descriptor space. For binary 
descriptors, such as substructural keys, the used similarity measure is converted 
to a distance measure for the abscise axis as 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦.  

If the dataset obey to the congenericity principle, the pairs of molecules 
will  appear in the lower triangle of the plot [99]. Thus in comparison to the 
SAS map, the structural cliffs and activity cliffs regions will switch places. 

To measure the degree to which the congenericity principle is respected, 
the “Patterson ratio” can be calculated. It is the ratio of the average absolute 
difference in activity for all the pairs of the dataset to the average absolute 
difference for the molecules with a similarity higher than a user defined 
threshold usually 0.7 (or 0.3 for 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 distance). The higher the ratio 
value the lower activity cliffs present in the data.  

6.3.  Metric distances for investigating SAR landscapes 

6.3.1. The used metric distances. 

The metric distances employed in this work (in progress) in order to explore 
the SAR landscapes were the Euclidean, Manhattan and the Soergel distances. 

The Euclidean distance between two samples 𝑠 and 𝑡 in a 𝑝 dimensional 
space is calculated as follows: 

𝑑𝑠𝑡 = ��(𝑥𝑠𝑗 − 𝑥𝑡𝑗)2
𝑝

𝑗=1
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The Manhattan distance between the two samples 𝑠 and 𝑡 in the same 𝑝 
dimensional space is given by: 

𝑑𝑠𝑡 = ��𝑥𝑠𝑗 − 𝑥𝑡𝑗�
𝑝

𝑗=1

 

These two distances vary between 0 and ∞. Thus, a prior scaling of the 
data or a conversion of the distance to a similarity measure between 0 and 1 is 
often needed. The most simple way to calculate the similarity from the distance 
is: 

𝑆𝑖𝑚 =
1

1 + 𝑑𝑠𝑡
     0 ≤ 𝑆𝑖𝑚 ≤ 1 

The Soergel distance between the two samples 𝑠 and 𝑡 is calculated as follows: 

𝑑𝑠𝑡 = 1 −
∑ 𝑚𝑖𝑛{𝑥𝑠𝑗, 𝑥𝑡𝑗}𝑝
𝑗=1

∑ 𝑚𝑎𝑥{𝑥𝑠𝑗, 𝑥𝑡𝑗}𝑝
𝑗=1

=
∑ |𝑥𝑠𝑗 − 𝑥𝑡𝑗|𝑝
𝑗=1

∑ 𝑚𝑎𝑥{𝑥𝑠𝑗 , 𝑥𝑡𝑗}𝑝
𝑗=1

      0 ≤ 𝑑𝑠𝑡 ≤ 1 

where 𝑝 is the number of variables. 

For binary data, the Soergel distance is the complement of the Jaccard-
Tanimoto [100,101]. Thus, it could be possible to use the Soergel distance not 
only for real numbers but also for binary variables and mixed-type data without 
the necessity to any weighting scheme.  

Since the Soergel distance varies between 0 and 1 and it was noticed that 
it is less sensitive to the scaling compared to the previous two metric distances. 
consequently, there is no need to scale the data before using the Soergel 
distance which is the case of many other distance measures. 

6.3.2. Comparison of the distances using the Patterson plot. 

A subset of 430 molecules was randomly extracted from the previously 
described logP dataset consisting of 12505 molecules (see Section III.2.2). 
Using DRAGON software, the substructural descriptors of the block Atom-
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centered fragments were calculated. The total number of retained descriptors 
was 105. 

The Soergel, Euclidean and the Manhattan distances were used to make 
the Patterson plots. The different ratios were calculated using a threshold of 
0.3. The red lines on the plots (Figure 11, Figure 12 and Figure 13) indicate the 
values used to calculate the Patterson ratio as explained in Section III.6.2.2. The 
average value and the 95 percentile of the SALI index are also calculated for 
each plot. The scaling is performed by dividing by maximum value of each 
descriptor. 

All pairs of molecules with both Euclidean and Manhattan distances, 
without scaling are shown to be far from each other (Figure 11a and Figure 
12a). In these two plots, the Patterson ratio reached 7 which is a relatively high 
value for an heterogeneous dataset. This high value do not indicate an optimal 
SAR landscape for QSAR modeling since the interval of distances between 0 
and 0.6 is not populated. While with the scaled data, the plots showed a 
Gaussian pattern with a maximum value of distance between the pairs not 
exceeding 0.9 (Figure 11b and Figure 12b). In these two cases, the Patterson 
ratio is lower than the previous two plots which may indicate the presence of 
activity cliffs in the dataset. This is confirmed by the higher average and 95 
percentile values for the SALI index.  

 

Figure 11: The pairwise Euclidean distance without scaling (a) and scaled (b). thr: the used 
threshold for calculating the Patterson ratio; av SALI: the average value of the SALI index 
on all pairs; 95 perc: the 95 percentile of the SALI index on all pairs. 

a b 
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Figure 12: The pairwise Manhattan distance without scaling (a) and scaled (b). thr: the 
used threshold for calculating the Patterson ratio; av SALI: the average value of the SALI 
index on all pairs; 95 perc: the 95 percentile of the SALI index on all pairs. 

In all the mentioned figures, the pairs of molecules seem to have similar 
distances between them since all of them are located in a narrow interval of the 
𝑥-axis. This is not the usual distribution of randomly selected datasets of such a 
number of molecules. This means that, probably, the Euclidean and the 
Manhattan distances in both scaled and non-scaled cases did not show the real 
distribution of the molecules in the descriptor space of the dataset. 

 

Figure 13: The pairwise Soergel distance on non-scaled (a) and scaled data (b). thr: the used 
threshold for calculating the Patterson ratio; av SALI: the average value of the SALI index 
on all pairs; 95 perc: the 95 percentile of the SALI index on all pairs. 

Unlike the two previous distances, the Soergel distance showed similar 
patterns with the scaled and non-scaled data (Figure 13). This confirms the fact 

a b 

a b 
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that Soergel distance is independent from the scaling. Also, the Patterson ratios, 
the average and 95 percentile of SALI index have similar values in both plots 
indicating a similar SAR landscape. 

The pairs of molecules are more distributed on the 𝑥-axis to occupy 
most of the distance interval between 0 and 1 which is the expected behavior 
for such number of different molecules.  

The general pattern of these last two plots, showing an increasing 
difference in the activity with the increase in the distance between the pairs of 
molecules, indicates a relatively smooth landscape for this dataset. Hence, this 
dataset obeys to the congenericity principle which makes it adapted for QSAR 
modeling.  

The Soergel distance showed interesting properties making it more 
suitable for the investigation of the SAR landscapes compared to the Euclidean 
and the Manhattan distance measures because it is much less dependent on the 
scaling and does not require the calculation of the similarity, being already 
normalized between 0 and 1. As further work, the Soergel distance could be 
tested for SAR landscape exploring in the case of datasets with real and mixed-
type values. 
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7. Conclusion 
 

 

 

 

The manufactured chemical substances provide a large range of services and 
tools supporting the modern lifestyle and economies. Nevertheless, the 
increased quantities of chemicals in the environment may endanger human 
health and the environment. Hence, there is a need to improve the scientific 
understanding of the effects of the chemicals that can find their way to the 
environment and end-up in the living organisms. 

In order to find the right balance between the benefits of chemicals and 
their side effects, their risk assessment is required by REACH. Since there is a 
need to waive animal testing and reduce the risk assessment costs, REACH 
promotes the use of alternative methods such as QSAR/QSPR models. 

In this thesis, the conceptual basics of QSAR modeling were explained. 
After that, the different steps to be taken during the analysis study, the technical 
details of the applied methodologies as well as newly tested molecular 
descriptors have been introduced. In addition, the validation and the reliability 
assessment techniques were described, with reference to the REACH 
requirements.  

The mentioned steps for QSAR modeling have been followed in the 
applications section of this work. Three endpoints with interest to REACH 
legislation including the physicochemical property logP the bioaccumulation 
and the biodegradation, have been modeled.  
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LogP is known to be an important parameter for a multitude of 
biological activities and environmental fate of chemicals. This property have 
been subject for two case studies in this work. The first was aiming to predict 
the logP values for a set of chemicals with unknown experimental responses 
within the log-1000 challenge involving several research groups. A number of 
QSPR models have been developed for the purpose and the best three models 
were selected and submitted. These models showed good and robust statistics 
in fitting, cross-validation and predictive ability on the test set. In addition the 
predictions for the contest dataset were benchmarked with commonly used 
models from the literature (MlogP and AlogP). The second case study was 
intended to test a new approach for variable selection coupling the GAs with 
the MCDM methods on the Syracuse database for logP. The developed 
algorithm applied on PLS resulted in a model with reasonable compromise 
between the predictive ability and the complexity of the model parameters 
usually required for such big datasets. Hence, the Utility function used to score 
the models demonstrated its usefulness in selecting the best models when 
several parameters have to be optimized simultaneously. In this study, the 
quality of the data, which is an important factor in QSAR modeling, was a 
result of the use of the automated KNIME workflow.  

Since the bioaccumulation is one of the REACH most required 
endpoints for environmental fate assessment, this endpoint was modeled for a 
specific group of chemicals. Being a list of widely used POPs during the last 
decades, PBDEs are the centre of a number of studies involving toxicity and 
environmental side effects of these chemicals. The three commonly used 
factors for assessing the bioaccumulation of chemicals, (BCF, BAF and BMF) 
have been modeled using different data sources. Then, the values of the three 
factors have been predicted for the whole set of 209 BDE congeners [71]. The 
developed models showed good predictive ability and their applicability domain 
demonstrated a maximal coverage of the 209 BDE congeners. Especially for 
BCF, which is the most important factor between the three mentioned, the 
proposed model in this study presented better results on PBDEs in comparison 
with global models from the literature. 
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The last modeled endpoint of interest to REACH regulation was the 
biodegradability. In this study, a special interest was given to the preparation of 
the dataset before the modeling step. Then three models and their consensus 
have been proposed using different classification methods: PLSDA, 𝑘NN and 
SVM. The developed models were validated in three steps using cross-
validation, a test set left out from the same dataset and an external validation 
set gathered from different sources. The models showed a good predictive 
ability in comparison with previous published studies in the literature [79]. The 
thorough data screening contributed in a significant way to good results of the 
models. Moreover,  the consensus modeling also improved the predictive ability 
of the developed models by considering the three classification methods at the 
same time. 

In addition to the modeling results, methodological aspects of QSARs 
have been discussed. Theory and applications of applicability domain 
approaches were explained in a comparison study [84].  

In addition, the SALI index for the assessment of the structure-activity 
landscapes have been introduced. Then, it was used to compare the usefulness 
of three metric distances (Euclidean, Manhattan, Soergel) for the 
characterization of activity cliffs in QSAR data. The Soergel distances showed 
interesting features that will be further investigated for the purpose. 

Even though, the biological activity is a complex process involving 
multiple parameters, the developed QSAR models showed good estimation of 
the predicted endpoints especially when the data is well curated and the 
appropriate tools applied. Thus QSAR/QSPR modeling is a useful technique 
for filling the gap of knowledge about chemicals, thus it is useful for regulatory 
purposes. 

This work was an attempt to contribute to the implementation of the 
European regulation on chemicals REACH. The studies were conducted within 
the European project ECO-ChemOinformatics (http://www.eco-itn.eu/), in 
collaboration with different partner groups participating to the same project as 
well as other related, ongoing and finished, European projects. 

http://www.eco-itn.eu/
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a b s t r a c t

Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in textiles, foams and plastics.
Highly bioaccumulative with toxic effects including developmental neurotoxicity estrogen and thyroid
hormones disruption, they are considered as persistent organic pollutants (POPs) and have been found
in human tissues, wildlife and biota worldwide. But only some of them are banned from EU market.
For the environmental fate studies of these compounds the bioconcentration factor (BCF) is one of the

most important endpoints to start with. We applied quantitative structure–activity relationships tech-
niques to overcome the limited experimental data and avoid more animal testing.
The aim of this work was to assess the bioaccumulation of PBDEs by means of QSAR. First, a BCF dataset

of specifically conducted experiments was modeled. Then the study was extended by predicting the bio-
accumulation and biomagnification factors using some experimental values from the literature. Molecu-
lar descriptors were calculated using DRAGON 6. The most relevant ones were selected and resulting
models were compared paying attention to the applicability domain.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Polybrominated diphenyl ethers (PBDEs) is a class of brominated
flame retardants (BFRs). Over the last 30 years, for their interesting
characteristic of delaying ignition and inhibition of fire, PBDEs have
been used in textiles, polyurethane foams, upholstery stuffing for
furniture and car seats, electronic components and plastics (de
Wit, 2002). Due to the fact that these compounds are not chemically
bound to the products, there is high risk of leaching into the envi-
ronment (Hutzinger et al., 1976). The widespread use of these com-
pounds increased their worldwide presence in various biotic and
abiotic matrices (Mikula and Svobodova, 2006). Thus the need for
toxicity investigations to determine potential adverse health and
environmental effects associated with these compounds.

Studies have been conducted for a better understanding of the
potential health risks of PBDEs. Some investigations revealed high
concerns about liver toxicity, thyroid toxicity, developmental and
reproductive toxicity (ATSDR, 2004). PBDEs are sharing some toxi-
cological properties with other structurally similar polyhalogenat-
ed aromatic compounds, particularly PCBs; however their toxicity
still varies by congeners due to their different chemical structures
(Pijnenburg et al., 1995; Eriksson et al., 1998; McDonald, 2002;
Palm et al., 2002). In particular, the presence of bromines in ortho
position of the oxygen bridge presents a barrier to rotation that
would prevent the two aromatic rings from assuming a fully copla-
nar configuration; this has implications on dioxin-type toxicities
which are mediated by the aryl hydrocarbon receptor (AhR)
pathway (ATSDR, 2004). In addition to the direct effects of PBDEs,
another way of possible exposure as a secondary poisoning is the
formation of brominated dibenzo-p-dioxins and dibenzofurans
during incomplete combustion or other high temperature
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processes and recycling activities (Watanabe and Tatsukawa, 1987;
Weber and Kuch, 2003). As a prevention of these risks, four BDE
groups (tetra, penta, hexa and hepta) were added to the list of POPs
in Appendix A of the Stockholm convention (UNEP, 2009).

The environmental fate of these xenobiotic compounds is gov-
erned by their physical and chemical properties and their propen-
sity for biotic and abiotic transformation. In general, BDE
congeners are relatively hydrophobic and lipophilic compounds
that have low water solubility and low vapor pressures. Thus, air
and water are primary transport media for PBDEs to end up in soils
and sediments that are the most polluted. PBDEs are strongly ad-
sorbed to soil, and adsorption increases with the bromination of
PBDEs and organic carbon content of soil and sediment (ATSDR,
2004). The hydrophobic and lipophilic properties of PBDEs cause
their bioaccumulation in aquatic organisms by exposure within
their food web. PBDE congeners are also found in a wide variety
of avian species, insects, and terrestrial mammals arriving to
humans as it was detected in blood and breast milk (Noren and
Meironyte, 2000; Patterson et al., 2000; Sharp and Lunder, 2004;
Jakobsson et al., 2005).

In the environment (atmosphere, water, and biota), levels of
PBDEs tend to be dominated by lower brominated congeners that
are highly toxic, bioaccumulative and persistent (ATSDR, 2004).
This is possibly due to the debromination of higher brominated
BDEs (Env. Canada, 2004). The low brominated BDEs (1–5) are
likely to be carcinogenic and endocrine disrupter toxicants (Fernlof
et al., 1997; Darnerud et al., 1998; Eriksson et al., 2001). Higher
brominated congeners (e.g., decaBDE) are typically detected only
near point sources (Wania and Dugani, 2002).

PBDEs are mainly discharged into the air from production, use,
and recycling of PBDE-treated plastics, electronics, textiles, and
polyurethane foams. They are discharged into surface waters and
soil from industrial activity and sewage treatment plants. The land
disposal of sewage and industrial sludge also contribute to envi-
ronmental loadings (USEPA, 2010).

Certain biotic and abiotic processes can transform PBDEs in the
environment, themost importantprocesses includebiodegradation,
biotransformation, and photolysis. Biodegradation is breaking the
chemical structures by aerobic microbes, via oxidative dehalogen-
ation, and anaerobic microorganisms (He et al., 2006; Kim et al.,
2007). Biotransformation is the conversion of the congeners through
metabolic pathways by removal of bromine atoms (Stapleton et al.,
2002; Stapleton et al., 2004a,b,c; Tomy et al., 2004). Photolysis in-
volves the breakdown of PBDEs by the action and the energy of sun-
light (Watanabe and Tatsukawa, 1987; Fang et al., 2008; Stapleton
and Dodder, 2008).

In addition to physico-chemical properties, the bioaccumulation
is an important endpoint to assess the environmental fate of PBDEs.
Bioconcentration factor (BCF), bioaccumulation factor (BAF) and
biomagnification factor (BMF) are distinct measurements to study
bioaccumulation of POPs (Arnot and Gobas, 2006). BAF describes
a process whereby an organism acquires a body burden of a chem-
ical in relation to contact through all possible pathways of exposure
(i.e., dietary absorption, transport across the respiratory surface,
dermal absorption, and inhalation (Gobas and Morrison, 2000). Un-
like bioaccumulation, bioconcentration is the process by which a
chemical substance is absorbed by an organism from the ambient
environment only through its respiratory and dermal surfaces.
While for BCF dietary exposure is not included; the biomagnifica-
tion is expressing the ratio between the chemical concentration
in the diet and in the organism. For chemicals that are known to en-
ter ecological magnification in food webs, field BAFs tend to be
greater than the BCFs from laboratory experiments that do not in-
clude dietary exposure (Arnot and Gobas, 2006). Both BCF and
BAF are calculated by the ratio of the chemical concentration in
the organism and its concentration in the water at steady state.

However, BCF can only be measured under controlled laboratory
conditions in which dietary intake of the chemical are deliberately
not included.

BCF is consistently used for assessing bioaccumulation potential
by regulatory agencies as a part of Persistent, Bioaccumulative, and
Toxic (PBT) assessment programs (Arnot and Gobas, 2006). This fac-
tor andother bioaccumulation criteria (Supplementary information,
Table SI.1) were also used for the development of environmental
standards and guidelines (Walker and Gobas, 1999; USEPA, 2000).

One of the problems faced in assessing bioaccumulation of
POPs, in addition to uncertainty with empirical values, is the lack
of experimental data. A case study of organic chemicals on the
Canadian Domestic Substances List indicates that empirical data
are available for less than 4% of the chemicals that require evalua-
tion. 76% of these chemicals have less than three acceptable quality
BCF or BAF values (Arnot and Gobas, 2006). For PBDEs, only few
values for some commercial mixtures are available in the litera-
ture. To fill the data gaps, we used quantitative structure–activity
relationships (QSARs) that are becoming more and more recog-
nized by scientific community and legislators as an alternative to
animal testing and high costs of experiments.

In this study we aimed to predict BCF of PBDEs for aquatic
organisms in the framework of the partnership between the two
EU projects related to REACH (Registration, Evaluation, Authoriza-
tion and Restriction of Chemicals) Environmental Chemoinformat-
ics (ECO) and Case Studies on the Development and Application of
in-Silico Techniques for Environmental hazard and Risk assess-
ment (CADASTER). We first modeled BCF for oligochaetes from
experimental data collected for this task, and then the study was
extended by investigating and modeling BAF and BMF for aquatic
organisms from the literature.

2. Materials and methods

Here we used the same numbering system for PCDEs and PBDEs
as assigned to the PCB congeners by Ballschmiter and the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) (Ballschmiter
et al., 1992). PBDEs are compounds with a common structure of a
diphenyl ether molecule having from 1 to 10 bromine atoms at-
tached. Depending on the location and number of bromine atoms,
there are 209 possible PBDE congeners. This similarity of congeners
is making the QSAR study possible as the QSAR models are valid for
similar compounds.

Experimental values from different sources were collected and
evaluated to select the most suitable dataset for this study. Princi-
pal component analysis (PCA) was used to explore the data and
regression methods, ordinary least squares (OLSs) and partial least
squares (PLSs), were applied to obtain predictive QSAR models. Un-
like OLS, PLS-regression can model data with collinear and noisy
variables. It finds fundamental relations between the matrix of
descriptors (X) and the response (Y) using new fewer variables
called latent variables (LVs) that are orthogonal and explaining
the maximum variance in the Y space (Wold et al., 2001).

In the modeling step, 167 descriptors based on the molecular
topology were calculated by using the software DRAGON 6 (Talete,
srl). After automatically removing constant and near constant vari-
ables, using the same software, descriptor pairwise correlation was
checked with a fixed threshold of 95% to avoid the problem of mul-
ticollinearity (Slinker and Glantz, 1985; Miles and Shelvin, 2001).
30 descriptors were left for the next step of variable selection to
catch the most predictive descriptors. This operation was per-
formed by using genetic algorithms (GAs) (Leardi and Lupianez,
1998; Ballabio et al., 2011). The used GAs start from an initial ran-
dom population of chromosomes. Each chromosome is a binary
string (genes) that represents the presence/absence of the variable
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in a model by maximizing a defined fitness function. Afterwards,
an evolution process is simulated and new chromosomes are ob-
tained by coupling the chromosomes of the initial population with
genetic operations (crossover and mutation). The evolution process
is repeated 30 times and the whole process is repeated for
100 runs. The fitness function used was Q2 calculated in validation
with 5-fold groups (Consonni et al., 2009, 2010).

The GAs provided a set of optimal models that were subject to a
comparison in order to minimize the number of used descriptors,
the number of latent variables for PLS models and the number of
congeners outside the applicability domain (AD). The model with
the best compromise between these criteria was selected. The
evaluation of the AD was investigated using the leverage approach
with a threshold of three times the average of leverages from the
matrix of the used descriptor values of the training set. The calcu-
lations were performed in MATLAB 7 (MathWorks, Inc.).

2.1. Uncertainty

When dealing with experimental data we have to be aware of
its uncertainty. For BCF a data quality assessment found that 45%
of values are subject to at least one major source of uncertainty
(Arnot and Gobas, 2006). There are two measurements to take:
the concentration in water and concentration in the organism.
Uncertainty related to water concentration comes from assump-
tion if not measured, fluctuations in the water concentration

Table 1
BCF for the 21 detected PBDEs in Tubifex tubifex.

Congeners Corg
a (lg/kgww) Cwat

b (ng L�1) BCF (L kg�1) logBCFc

BDE-28 1.2 0.094 12860 5.83
BDE-47 77 5.9 13060 5.84
BDE-51 0.93 0.065 14290 5.88
BDE-66 4.12 0.195 21080 6.05
BDE-77 60.3 1.69 36760 6.29
BDE-99 87.9 4.55 19320 6.01
BDE-100 46 1.04 44430 6.36
BDE-119 0.384 0.014 28100 6.29
BDE-126 45.3 0.89 50740 6.43
BDE-153 9.73–15 0.394–1.03 24680–14627 6.13
BDE-154 13.85–3.36 0.405–0.29 34160–11582 6.15
BDE-180 0.21 0.14 1457 4.88
BDE-183 0.02–7.13 0.157–4.74 128–1505 4.36
BDE-197 7.93 2.23 3558 5.30
BDE-198 19.4 2.14 9080 5.68
BDE-203 2.68 0.38 7108 5.93
BDE-204 12.5 2.6 4800 5.75
BDE-206 0.73 0.21 3500 5.44
BDE-207 1.88–0.89 0.75–0.23 2496–3860 5.75
BDE-208 0.56 0.08 7130 5.57
BDE-209 16.9 5.8 2910 5.19

a Concentration in Tubifex tubifex on day 28 of uptake phase, based on wet
weight.

b Concentration in water on day 28 of uptake phase, based on wet weight.
c Lipid content based logBCF. The fraction of the lipid weight was 1.9%. When

multiple tests were available the mean is calculated on the log values.

Fig. 1. logBCF versus ALOGP for selected PBDE congeners (A). Average logBAF values from Table 3 versus ALOGP (B).
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during exposure (Gobas and Zhang, 1992), adsorption of chemicals
with low aqueous solubility by surfaces of testing equipment or
partition into the air if Henry’s Law constant is high. The use of
radio-labeled test chemicals to quantify concentrations and trans-
formation of the chemical in the water phase may also contribute
to errors in calculating the BCF if the parent compound is trans-
formed and the metabolite with the radio-label is not eliminated
from the organism (Goodrich et al., 1991; Toshima et al., 1992).
Sources of uncertainty of chemical’s concentration in the organism
are the exposure period in relation to the steady state, the mass of
the organism and its lipid content (Nichols et al., 1990), the tem-
perature of exposure and other sources (Arnot and Gobas, 2006).
Applying standard testing guidelines such as OECD (1984-315,
1996-305, and 2008-315) can contribute in reducing uncertainty
in the measured data and to provide confidence in the quality of
the data used to model the bioaccumulation assessments.

2.2. Bioconcentration factor

In order to assess bioaccumulation of PBDEs targeting aquatic
ecosystems, first we considered a dataset of experiments that were
conducted in the framework of the European project CADASTER, to
calculate BCF for tubificid oligochaetes Tubifex tubifex (OECD 315).
These aquatic organisms are relevant for our study as it is food for
fish and are living in surficial sediments where most BFRs tend to
concentrate. Three commercial mixtures from Wellington Labora-
tories were used: TBDE-71 for penta-BDE, TBDE-79 for octa-BDE
and TBDE-83R for deca-BDE. Then some individual congeners from

the same supplier were added for testing (PBDE-002, PBDE-077,
PBDE-126, PBDE-198 and PBDE-204). During the experiments it
was analytically difficult to separate the two tetrabrominated
congeners BDE-42 and BDE-66. Konstantinov et al. (2008) were
able to identify all BDEs in the mixture TBDE-71 by means of 1H
NMR and GC/MS and they reported that the weight percentage of
BDE-66 is 51 times higher than that of BDE-42; thus, it was as-
sumed the absence of BDE-42. Table 1 collects the obtained results
obtained at steady state. If the steady state was not reached during
the uptake phase, the BCF was calculated for day 28.

Before considering this dataset to model BCF, we first had to
check it for self consistency. It is known since early studies on
BCF that it is correlated with octanol–water partition coefficient
(Kow) (Mackay, 1982; Isnard and Lambert, 1988) and compounds
with a logKow above 4.5 are considered as bioaccumulating in a
regulatory PBT assessment (ATSDR, 2004; USEPA, 2010). For PCBs
and PBDEs Kow is increasing with the number of halogens (Hawker
and Connell, 1988; Braekevelt et al., 2003). Moreover, this behavior
is also observed for other groups of halogenated aromatic com-
pounds (Kuramochi et al., 2007). All these compounds are lipo-
philic, and octanol is generally considered to be a reasonable
surrogate phase for lipids in biological organisms, thus, BCF should
correlate well with Kow (Fisk et al., 1998; Dimitrov et al., 2002).
Higher bioaccumulation potential for PBDEs is generally noticed
compared to PCBs with similar Kow (Stapleton et al., 2004c; Wang
et al., 2007). But there is a general bilinear correlation pattern for
the BCF with logKow reported in several publications (Kannan
et al., 1998; Meylan et al., 1999; Wania and Dugani 2002; Wang

Table 2
Lipid based logBAF of different aquatic species in log (L kg�1).

Congeners Japanese sea bassa Ureogenic gobya Green craba Grapsid craba Giant Pacific oystera Asian green mussela Black-striped mussela Std. dev.

BDE-7 – – – 6.18 – – 5.46 0.51
BDE-15 6.32 6.15 6.29 6.32 6.25 6.20 6.14 0.08
BDE-17 6.33 5.76 5.52 4.59 5.90 5.92 5.72 0.54
BDE-28 6.79 6.37 6.29 6.65 6.59 6.55 6.48 0.17
BDE-47 6.90 6.86 7.04 6.70 6.57 6.57 6.47 0.21
BDE-66 7.37 – 6.74 7.22 7.32 7.19 7.14 0.22
BDE-71 6.99 6.36 6.44 6.15 6.88 6.77 6.65 0.30
BDE-85 – – – 5.16 5.22 5.12 4.83 0.17
BDE-99 6.64 – 7.22 6.61 6.56 6.68 6.24 0.32
BDE-100 6.87 7.01 6.65 6.75 6.73 6.70 6.44 0.18
BDE-153 6.52 – 6.81 6.63 5.70 5.93 6.15 0.43
BDE-154 6.71 6.81 6.59 6.49 6.42 6.07 6.50 0.24
BDE-183 – – 5.90 – – – 5.82 0.06
BDE-209 – 5.78 5.12 – 5.50 6.05 6.64 0.58

Congeners NorthernPikeminnowb Cutthroatb Smallmouth
bassb

Peamouthb Common
carpb

Rainbowtroutb Largescale
suckerb

Mountain
whitefishb

Lake
Troutb

Std.
dev

BDE-47 5.91 5.86 5.75 5.54 5.98 5.79 6.11 6.18 7.3 0.51
BDE-49 5.30 – 5.20 5.54 – 5.59 5.38 5.90 – 0.25
BDE-66 – – – – – – – – 7.3 –
BDE-99 – 5.44 4.98 – – 6.00 – 6.43 6.7 0.71
BDE-100 5.68 5.56 5.28 – 6.08 6.00 6.11 6.45 7.5 0.68
BDE-153 5.11 – – 5.34 – 5.91 5.57 6.26 – 0.45
BDE-154 5.33 5.32 5.00 5.11 5.15 5.71 5.70 6.04 – 0.36

Congeners Water snakec Northern snakeheadc Mud carpc Crucian carpc Prawnc Chinese mysterysnailc Std. dev

BDE-28 3.10 3.90 4.17 3.62 3.49 2.94 0.47
BDE-47 4.68 4.46 4.57 4.30 4.05 3.27 0.51
BDE-99 4.57 1.91 3.23 2.61 3.65 3.72 0.93
BDE-100 5.11 4.89 4.67 4.36 4.42 3.67 0.50
BDE-138 4.10 4.00 4.03 4.46 4.24 – 0.19
BDE-153 5.51 3.86 5.18 4.26 4.44 4.14 0.64
BDE-154 5.06 4.85 4.91 4.37 4.33 3.79 0.48
BDE-209 4.50 3.32 5.53 4.06 4.56 – 0.80

a Aquatic species from Tokyo Bay, Japan (Mizukawa et al., 2009).
b Aquatic species from North American lakes and rivers (Johnson et al., 2006; Streets et al., 2006).
c Aquatic species samples from an e-waste recycling site, China (Jiang-Ping et al., 2008).
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et al., 2007; Jiang-Ping et al., 2008; Mizukawa et al., 2009). BCF and
Kow in the range up to logKow of 7 are positively correlated: for
low brominated congeners (up to penta-BDE) BCF is increasing
from �105 to �107. This increase in BCF with bromination number
can be explained by equilibrium partitioning due to hydrophobic-
ity, because higher-brominated congeners are more hydrophobic
(Meylan et al., 1999). Conversely, at logKow above 7, BCFs of both
PBDEs and PCBs decrease as Kow increase further. This can be partly
explained by the steric hindrance that restricts permeation of the
large and very hydrophobic organic compounds through the cell
membrane (Shaw and Connel, 1982). Also the low water solubility
and binding to surfaces would cause these compounds to bind to
dissolved organics and particles (Moermond et al., 2005).

As there are no available experimental values of logKow cover-
ing all selected congeners, we plot logBCF against ALOGP which is
an estimation of logKow (Ghose and Crippen, 1986). Fig. 1A is
showing similar trend for oligochaetes as described in the litera-
ture, also the same threshold of about 7 over which BCF decreases
as logKow increases further.

Nevertheless, the two hepta-brominated BDEs (BDE-180 and
BDE-183) disagree with the general pattern and showed low BCF
values. This behavior can be probably due to the cited sources of
uncertainty related to experiments. However, the biological pro-
cesses in organisms, such as different metabolic rates of these
chemicals, could influence this general correlation trend predicted
by Kow. Chemical-specific, species-specific and site-specific bioac-
cumulative potential and their correlations with Kow were found
in field studies, largely due to different metabolic rates of chemi-
cals which were dependent on both the chemical structure and
the metabolic capacity of the organism (Streets et al., 2006; Wang
et al., 2007). The difference of the BCF values in the two congeners
can be related to the structural dissimilarity especially the number
of bromines in the ortho-position. But, for BDE-183, if we consider
only the BCF value (4.9) from the second test then the two

congeners will have the same BCF. Knowing that they had different
concentrations in the water and in the lipid content of the
organisms, this substantially diminishes the probability of an
experimental error. Different studies have indicated that BDEs
are metabolized in fish. Stapleton et al. (2004c) dedicated an
experimental study to biotransformation of BDE 99 and 183 and
suggested that this last one is debrominated to form two different
hexabrominated congeners. Jiang-Ping et al. (2008) also attributed
many data points that diverged from the general trend predicted
by Kow in some aquatic species to metabolism; those showing
low bioaccumulative rate by being metabolized and highly bioac-
cumulative by being the metabolic products of higher brominated
congeners. BDE-99 and BDE-197 were also a bit below the general
trend with lower BCF than congeners with similar Kow.

Whether it was due to experimental uncertainty or to biological
metabolism, the situation of BDE-180 and BDE-183 is specific to
this dataset of 21 BCF values for oligochaetes. So including them
will probably affect the final QSAR model as our target is a general-
ized idea about PBDEs’ BCF for aquatic biota. Also, from a regula-
tory perspective, it is not interesting to include biotransformation
in the model. That’s why we decided to remove them from our
training set as outliers.

2.3. Bioaccumulation factor

Several studies sampled and measured PBDEs’ concentrations in
some aquatic species and water. In field conditions, the organisms
are exposed to all possible contamination pathways including diet
so the concentrations ratio is considered as BAF. Field BAF will also
be different from laboratory BCF by routes and duration of uptake.
Experimental values of BAFs for PBDEs were collected from differ-
ent literature sources, where information about the lipid content
concentrations was available.

Fig. 2. Loadings plot of the studied species’ PCA. Data from; Table 2a, Table 2b and Table 2c.
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Values in Table 2a were obtained from concentrations in coastal
organisms and water collected from the northwest head of Tokyo
Bay, Japan in September 2005 (Mizukawa et al., 2009). Table 2b
summarized logBAF values calculated from the fish fillet and water
data collected in 2005–2006 from different North American lakes
and rivers, these being the Spokane River, Lower Columbia River,
Yakima River, Lake Washington and all five Great Lakes (Johnson
et al., 2006; Streets et al., 2006). Data from an electronic waste
recycling site located in Longtang Town, Qingyuan City, in South
China sampled in 2006 was used to calculate logBAF of Table 2c
(Jiang-Ping et al., 2008).

To check if these data are useful to model the BAF for aquatic
species and whether it is possible to merge it or not, a principal
component analysis of the present species using the software
DRAGON 6 (Talete, srl) was performed. The analyzed matrix is
constituted by 16 samples (PBDE congeners) and 22 variables
(species). Fig. 2 is the loading plot of the first two principal com-
ponents (PCs) where the relationships between the different
aquatic species can be highlighted. The first two PCs, explaining
a total variance of 47.3%, are showing that the data from the dif-
ferent sources gave different information and only the Japanese
and the North American data can be studied together. The miss-
ing values are filled with the mean value of the corresponding
variable. This divergence could be due to the different

metabolism capacity between species and the different natural
conditions studied.

Concerning the third dataset, the major reason that made it dis-
tant from the others is the low BAF values, possibly due to the high-
er water concentrations. The sampling site was surrounded by
several e-waste recycling workshops where more than 80000
workers had been involved in the business of e-waste dismantling
and recycling. Approximately 1.7 million tons of e-waste were
annually dismantled causing high water pollution (Jiang-Ping
et al., 2008). For the studied congeners, the mean water concentra-
tion of PBDEs in the Chinese site was 2.77 ng L�1 compared to
8.14 pg L�1 from the Japanese site also the standard deviation
between species is relatively higher.

In highly polluted water, the PBDE concentrations in biota do
not seem proportional with the water concentration. In addition,
there was no correlation between the average values of the exper-
imental data and ALOGP. So we decided to merge only the first two
datasets to model aquatic species’ BAF. The correlation profile of
the average values from Table 2a with ALOGP (Fig. 1B) shows a de-
cline of BDE-85 from the general pattern that can be related to
metabolisation. In the literature, there was an indication about
the debromination of this congener in fish (Tomy et al., 2004;
Wolkers et al., 2004). Therefore, because of these uncertainties, this
compound was removed from the dataset.

Table 3
Selected models of logBCF, logBAF and BMF.

Model Endpoint Descriptors LVs R2% RMSE Q2%(5f) cv RMSE (5f) No. outside AD

MLR-1 BCF 3 – 76.1 0.168 73.3 0.177 17
MLR-2 BCF 4 – 92.3 0.108 86.1 0.146 11
MLR-3 BCF 3 – 86.8 0.142 81.1 0.170 6
MLR-4 BCF 2 – 85.5 0.149 80.0 0.175 4
MLR-5 BCF 2 – 86.7 0.142 81.6 0.167 6
MLR-6 BAF 3 – 91.9 0.122 84.5 0.169 62
MLR-7 BAF 4 – 95.0 0.095 87.0 0.154 50
MLR-8 BMF 4 – 91.5 2.690 87.4 3.268 134
MLR-9 BMF 4 – 90.4 2.855 83.0 3.806 96
MLR-10 BMF 4 – 91.0 2.760 80.4 4.083 36
PLS-1 BAF 5 3 94.3 0.103 91.3 0.127 38
PLS-2 BAF 6 3 95.6 0.090 93.4 0.110 67

Fig. 3. Comparison of the predictions for the 19 PBDEs. Observed logBCF ( ), predicted logBCF ( , this work), EpiSuite prediction ( ), CAESAR prediction ( ).
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2.4. Biomagnification factor

One possible way to avoid problems related to water concentra-
tions is to study BMF. Tomy et al. (2004) studied bioaccumulation
and biotransformation of PBDEs and calculated BMF for 13 differ-
ent BDEs ranging from 3 to 10 brominated congeners. Table SI.2
is summarizing the low and high treatment food and the average
values that were considered for the model. The studied aquatic spe-
cie was the lake trout (Salvelinus namaycush) that was exposed to
spiked food for 56 d of uptake followed by 112 d for elimination.
In this data, there were no clear trends in assimilation efficiencies
and BMF with either bromine number or logKow. A possible expla-
nation is the long duration of the experiments that highly affected
the bioaccumulation rates by biotransformation via debromina-
tion. Lower brominated congeners were created and there are no
analytical methods to distinguish between the BDE that was bioac-
cumulated from BDE formed via debromination (Tomy et al., 2004).
However, Burreau et al. (1997) showed that assimilation efficien-
cies of PBDEs had negative relationship with the number of bro-
mines but not with logKow.

BMFs were calculated using the equation: BMF ¼ a�F
Kd

where a is
the assimilation efficiency during uptake, F is the feeding rate and
Kd the depuration rate constant.

3. Results and discussion

3.1. Bioconcentration factor

The CADASTER dataset generated for 19 PBDE congeners was
used to build the models. As the congeners differ by the number
of the bromines and their positions on the two rings, a multiple lin-
ear regression model of three variables was first built. It can also be
considered as a non-linear model because it is using as descriptors
the number bromine atoms (nBr), the number of bromines in
ortho-position (F03[O–Br]) and the squared value of bromines
(nBr2) to deal with the observed bilinear correlation of logBCF
and logKow (MLR-1 of Table 3). It considered the number of bro-
mines as it is correlated with logKow and the bromines in ortho
position as an homology with chlorines in ortho position and its

Fig. 4. Q Residuals versus Hotelling T2 of the model PLS-2 (A). Latent variables selection of the model PLS-2: cross-validated RMSE ( ) and Q2 ( ) versus latent variable
number (B). Latent variable selection of the model PLS-2: cumulated variance on X ( ) and on Y ( ) versus latent variable number (C). Two dimensional MDS plot from
the model MLR-10, training set with congeners numbers ( � ), test set ( ) and congeners outside the AD ( ) (D).
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Table A1
The predicted values for logBCF, logBAF and BMF. NR refers to not reliable predictions; ⁄refer to congeners detected as outside the applicability domain.

Congeners logBCF logBAF BMF Congeners logBCF logBAF BMF

BDE-1 5.69 5.22 8.77� BDE-36 6.06 5.91 77.14�

BDE-2 5.86 5.25 45.21� BDE-37 6.09 6.75 20.18
BDE-3 5.91 5.58 23.96� BDE-38 6.07 6.26 36.89
BDE-4 5.47 5.10 NR� BDE-39 6.07 6.25 60.46�

BDE-5 5.77 5.56 7.75 BDE-40 5.96 6.15 NR
BDE-6 5.77 5.62 16.66 BDE-41 5.97 6.25 NR
BDE-7 5.80 5.75 14.21 BDE-42 5.97 6.27 6.29
BDE-8 5.80 5.90 1.25� BDE-43 5.96 5.17 18.51
BDE-9 5.77 4.87 20.71 BDE-44 5.96 5.35 7.91
BDE-10 5.61� 5.33� NR� BDE-45 5.79 4.63� 4.02
BDE-11 5.93 5.63 55.46� BDE-46 5.79 5.54 NR
BDE-12 5.96 5.97 24.18 BDE-47 5.97 6.40 15.27
BDE-13 5.96 5.96 35.96� BDE-48 5.97 5.47 6.29
BDE-14 5.93 5.48 67.24� BDE-49 5.97 5.48 16.89
BDE-15 5.99 6.30 17.61 BDE-50 5.80 5.44 23.60
BDE-16 5.69 5.58 NR BDE-51 5.80 5.60 13.00
BDE-17 5.71 5.70 7.13 BDE-52 5.96 4.55� 18.51
BDE-18 5.69 4.84 9.17 BDE-53 5.79 4.75 10.50
BDE-19 5.46 4.90 5.06 BDE-54 5.55 4.47� 25.57�

BDE-20 5.92 6.03 17.40 BDE-55 6.14 6.69 14.23
BDE-21 5.94 6.14 3.63 BDE-56 6.14 6.88 3.63
BDE-22 5.94 6.31 3.63 BDE-57 6.13 5.54 41.17
BDE-23 5.92 5.06 32.05 BDE-58 6.13 6.44 37.05
BDE-24 5.79 4.94� NR BDE-59 6.03 5.48 3.68
BDE-25 5.94 6.22 21.89 BDE-60 6.14 6.97 2.05
BDE-26 5.92 5.29 28.01 BDE-61 6.14 5.66 18.35
BDE-27 5.79 5.84 2.40 BDE-62 6.03 5.36 6.18
BDE-28 5.96 6.49 9.26 BDE-63 6.14 5.82 28.95
BDE-29 5.94 5.42 15.41 BDE-64 6.03 5.69 NR
BDE-30 5.80 5.74 15.09� BDE-65 6.03 4.32� 11.84
BDE-31 5.94 5.57 15.41 BDE-66 6.14 7.08 8.60
BDE-32 5.80 6.05 NR� BDE-67 6.14 5.92 24.83
BDE-33 5.94 6.38 NR BDE-68 6.14 6.64 41.99�

BDE-34 5.92 5.95 35.67 BDE-69 6.03 6.37 19.22
BDE-35 6.07 6.40 36.89 BDE-70 6.14 6.08 14.23
BDE-71 6.03 6.68 NR� BDE-107 6.34 6.42 28.39
BDE-72 6.13 5.64 47.65� BDE-108 6.34 7.24 34.95
BDE-73 6.03 6.32 16.72 BDE-109 6.29 6.02 10.39
BDE-74 6.14 6.19 12.65 BDE-110 6.29 6.35 NR
BDE-75 6.04 6.57 11.04 BDE-111 6.34 5.98 59.05�

BDE-76 6.14 6.79 10.18 BDE-112 6.29 4.88� 15.69
BDE-77 6.24 7.28 24.82 BDE-113 6.29 5.99 18.12
BDE-78 6.23 6.76 51.76� BDE-114 6.34 6.53 17.77
BDE-79 6.23 6.77 62.37� BDE-115 6.29 6.23 3.81
BDE-80 6.23 6.25 98.62� BDE-116 6.29 4.76� 9.13
BDE-81 6.24 7.11 35.42 BDE-117 6.29 5.08 9.13
BDE-82 6.23 6.93 NR BDE-118 6.34 6.80 13.72
BDE-83 6.23 5.76 17.64 BDE-119 6.29 7.36 5.07
BDE-84 6.13 5.30 0.38 BDE-120 6.34 6.38 44.38
BDE-85 6.23 7.07 5.77 BDE-121 6.29 6.99 31.68�

BDE-86 6.23 5.88 7.01 BDE-122 6.34 7.41 14.92
BDE-87 6.23 6.05 7.01 BDE-123 6.34 7.62 19.03
BDE-88 6.13 5.18 12.64 BDE-124 6.34 6.52 24.35
BDE-89 6.13 6.33 NR BDE-125 6.29 7.28 0.00
BDE-90 6.23 5.89 25.86 BDE-126 6.40 7.75� 41.15�

BDE-91 6.13 5.35 12.64 BDE-127 6.40 7.23 75.92�

BDE-92 6.23 4.87� 27.07 BDE-128 5.95 7.93� NR
BDE-93 6.13 4.12� 13.85 BDE-129 5.95 6.63 8.06
BDE-94 6.13 5.24 15.11 BDE-130 5.95 6.62 17.48
BDE-95 6.13 4.41� 9.80 BDE-131 5.90 6.00 8.20
BDE-96 5.97� 4.30� 21.55 BDE-132 5.90 6.14 NR
BDE-97 6.23 6.06 7.01 BDE-133 5.95 5.32 35.94
BDE-98 6.13 6.21 18.02 BDE-134 5.90 4.82 8.99
BDE-99 6.23 6.19 15.19 BDE-135 5.90 4.93 14.37
BDE-100 6.13 6.27 30.25 BDE-136 5.81 4.05� 16.53
BDE-101 6.23 5.17 16.44 BDE-137 5.95 6.77 16.65
BDE-102 6.13 5.46 8.60 BDE-138 5.95 6.92 7.23
BDE-103 6.13 5.33 27.45 BDE-139 5.90 6.06 20.91
BDE-104 5.97� 5.12� 43.20� BDE-140 5.90 7.19 16.79
BDE-105 6.34 7.68 4.30 BDE-141 5.95 5.61 17.48
BDE-106 6.34 6.26 28.39 BDE-142 5.90 4.70 12.32
BDE-143 5.90 6.11 4.15 BDE-178 5.68 4.36� 20.01
BDE-144 5.90 5.00 17.62 BDE-179 5.64 3.56� 20.60
BDE-145 5.81 4.99 29.16 BDE-180 5.65 6.61 17.00
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relation to toxicity and bioaccumulation in the case of PCBs (Safe,
1990; Leonards et al., 1998). Since the number of possible bro-
mines is 10, considering these variables this first model predicted
34 different values for the 209 congeners. This model presented
good statistics and was used as a benchmark for the genetic algo-
rithm results.

After that we applied the genetic algorithm to select the models
with the best statistics and in the same time minimizing the
number of variables and the congeners outside the applicability
domain. Table 3 lists some of the models with best statistics and
good coverage for the 209 PBDEs. 5-fold cross validation was used
to validate the models.

The model with the best statistics is MLR-2 (Q2 = 86.1%), but it
used a higher number of variables than MLR-1 that is considered
as a benchmark. The number of the compounds outside the AD var-
ied with the models because using different variables is associated
with different distribution of the data and thus different coverage
of the training set to the chemical space. The model with the best
compromise between the prediction ability, the number of vari-
ables and the number of compounds outside the AD is MLR-5. It
is using two variables: the centered Moreau-Broto autocorrelation
weighted by polarizability (ATSC6p) (Moreau and Broto, 1980a,b)
and the frequency of Br–Br bonds at topological distance 6
(F06[Br–Br]). The equation of the model to predict logBCF with
the lipid content correction is:

logBCF ¼ �0:3882� ATSC6p� 0:0486� F06½Br—Br� þ 7 ð1Þ
In order to make a comparison of the predictions obtained by

the selected MLR model with existing models for BCF, EpiSuite’s
model (BCFBAF), widely used for risk assessment, and CAESAR
BCF model were selected (Meylan et al., 1999; Lombardo et al.,
2010). As both models from the literature are predicting BCF for
fish and not stating that their used data were lipid content normal-
ized we proceeded to a correction of 5% lipid content as suggested

by OECD guideline 305 for testing BCF in fish. To make the compar-
ison possible we plotted the experimental and predicted values for
the oligochaetes in a 5% lipid content basis instead of 1.9%. Fig. 3
shows that both models were underestimating logBCF values for
PBDEs even after the lipid content correction. This can be explained
by the fact that both models had not any BDEs included in their
training sets. In the prediction report CAESAR declared that its pre-
dictions might be associated with low reliability in the case of
PBDEs while EpiSuite did not mention anything about the applica-
bility domain.

The higher experimental logBCF values for BDE-203 and
BDE-207 compared to the predicted values can be explained by
the debromination of higher brominated congeners such as BDE-
209 209 since the specie specific metabolisation is not included in
the model. The predictions for all PBDEs were presented in Appen-
dix A and congeners outside the AD are marked by asterisks.

3.2. Bioaccumulation factor

To predict BAF the genetic algorithm was applied on the dataset
of 14 congeners and the initial 30 descriptors with the same
approach as in the case of BCF. The best models were listed in
the Table 3.

The last model (PLS-2) has the best statistics. However, it is asso-
ciated with the highest number of compounds outside the AD
according to the leverage approach. Thus, the third one (PLS-1),
which is a PLS model constituted by five descriptors with three la-
tent variables with only 38 congeners outside the AD, was selected
to predict logBAF for all congeners. The descriptors used are the
spectral mean absolute deviation from Burden matrix weighted
by polarizability (SpMAD_B(p)) (Consonni and Todeschini, 2008),
Geary autocorrelations on the molecular graph weighted by elec-
tro-negativity (GATS6e), Moran autocorrelation weighted by ioni-
zation potential (MATS5i), Geary autocorrelation weighted by

Table A1 (continued)

Congeners logBCF logBAF BMF Congeners logBCF logBAF BMF

BDE-146 5.95 5.63 25.73 BDE-181 5.67 5.66 19.42
BDE-147 5.90 4.88 21.74 BDE-182 5.67 7.14 19.43
BDE-148 5.90 5.98 31.25 BDE-183 5.67 5.95 15.30
BDE-149 5.90 5.14 8.20 BDE-184 5.63 5.97� 44.68�

BDE-150 5.81 5.01 38.59� BDE-185 5.67 4.41� 15.59
BDE-151 5.90 3.82� 18.41 BDE-186 5.64 4.67� 24.36
BDE-152 5.81 3.91� 25.95 BDE-187 5.67 4.57� 15.59
BDE-153 5.95 5.94 16.65 BDE-188 5.64 4.71� 40.85�

BDE-154 5.90 6.20 25.04 BDE-189 5.64� 8.18� 31.06
BDE-155 5.81 5.97� 59.59� BDE-190 5.71 6.60 2.34
BDE-156 5.99 7.30 20.56 BDE-191 5.71 8.07� 2.42
BDE-157 5.99 8.41� 16.44 BDE-192 5.71 6.26 24.50�

BDE-158 5.99 7.08 NR BDE-193 5.71 6.56 6.83
BDE-159 5.99 6.86 48.48� BDE-194 5.39� 7.67� 15.91
BDE-160 5.99 5.47 13.10 BDE-195 5.46 6.95 2.89
BDE-161 5.99 6.73 23.79� BDE-196 5.46 7.12 7.02
BDE-162 5.99 7.01 39.06 BDE-197 5.47 5.99 28.77
BDE-163 5.99 5.79 4.86 BDE-198 5.48 5.26 14.81
BDE-164 5.99 7.03 NR BDE-199 5.48 5.41 6.56
BDE-165 5.99 5.44 28.62� BDE-200 5.49 4.40� 15.99
BDE-166 5.99 5.67 8.11 BDE-201 5.49 4.42� 24.24
BDE-167 5.99 7.43 24.68 BDE-202 5.50 2.85� 19.78
BDE-168 5.99 8.18� 9.45� BDE-203 5.46 5.48 11.14
BDE-169 5.99 8.40� 58.80� BDE-204 5.47 5.84 37.02�

BDE-170 5.65 7.78� 8.75 BDE-205 5.46� 7.81� 1.64
BDE-171 5.67 7.14 7.06 BDE-206 5.32 6.97 NR
BDE-172 5.66 6.28 25.54 BDE-207 5.36 5.87 17.15
BDE-173 5.67 5.61 7.35 BDE-208 5.39 3.75� 11.25
BDE-174 5.67 5.88 3.23 BDE-209 5.33 5.74 0.09
BDE-175 5.67 5.75 19.72
BDE-176 5.64 4.83 24.36
BDE-177 5.67 5.76 7.35
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ionization potential (GATS7i) and the frequency of Br–Br bonds at
topological distance 4(F04[Br–Br]) (Todeschini and Consonni,
2009).

It was also confirmed to be the best model by two multivariate
statistical process control (MSPC) tools that are often employed;
the lack of model fit, or Q residual statistic, and the sample-to-mod-
el distance given by Hotelling’s T2 statistic (Jackson andMudholkar,
1979). In Fig. 4A, T2 values indicated that samples had low leverage
on the model and did not exceeded the confidence limits of the
model’s hyperspace while residuals Q indicated that all samples
were well reconstructed by the model.

To select the number of latent variables (LVs) to be included in
the model we used the cross-validated root mean square error
(RMSE) and Q2 (Fig. 4B) that suggested the use of 3 latent variables.
This was confirmed by the cumulated variance on the descriptor
values that reached 83.6% and the response that reached 94.3%
(Fig. 4C). The results were presented in Appendix A and congeners
outside the AD are marked by asterisks.

3.3. Biomagnification factor

In the case of BMF, after applying the genetic algorithm on the
dataset of 13 congeners and 30 variables, the choice of the best
model was mostly based on the applicability domain because the
one with the best statistics was associated with high number of
congeners outside the AD according to the leverage approach.
Thus, the model that presented the lower number of congeners
that can be associated with low reliability of prediction was the
third model MLR-10 (Table 3). The 4 descriptors were Moran auto-
correlation weighted by Van der Waals volume (MATS6v), topolog-
ical charge index of order 5 (GGI5), mean topological charge index
of 2nd order (JGI2) and centered Moreau-Broto autocorrelation
weighted by Van der Waals volume (ATSC1v) (Todeschini and
Consonni, 2009). The high RMSE values is due to big standard devi-
ation between training responses: 9.6 compared to 0.51 for logBCF.

The equation of the selected model is:

BMF ¼ �12:8139� ATSC1v þ 41:5349�MATS6v þ 73:5575

� GGI5� 1:1780� 103 � JGI2þ 109:7641 ð2Þ
Moreover, to better visualize the four variables of MLR-10 mod-

el into two dimensions Multi-Dimensional Scaling (MDS) was
used. As it can be easily observed (Fig. 4D), most of the congeners
are close to the training set while the 36 BDEs considered as out-
side of the model’s AD were quite scattered and far from the train-
ing compounds and thus associated with lower reliability.

Calculated BMF by the selected model are in Appendix A. The
biotransformation of the studied BDEs affected also the predictions
resulting of low biomagnification rates. Thus, congeners with neg-
ative regression prediction values were considered not reliable
(NR). Low reliability predictions, i.e. compound out the applicabil-
ity domain are marked by asterisks.

4. Conclusions

This study was conducted in order to contribute to the risk
assessment of PBDEs that are considered as persistent and harmful
to the environment. For this purpose, we built different QSAR mod-
els to predict each of the three factors used to explain bioaccumu-
lation of these POPs. The used datasets presented good coverage of
the whole group of congeners.

Predicting bioaccumulation of PBDEs, like any other biological
activity, is not an easy task due to lack of experimental data and
information on biotransformation of these compounds. Metabo-
lism of some congeners by debromination is a specie-specific and
site specific process that can affect the reliability of model

predictions (Table 1, Appendix A). This can explain the high pre-
dicted logBCF compared to experimental values for the two cong-
eners that were removed from the training set (BDE-180 and
BDE-183). Also the under estimated logBCF values in the case of
the two congeners BDE-203 and BDE-207 can be due to the meta-
bolisation of higher brominated congeners. However after applying
the appropriate analysis tools and regression methods we were
able to build models with good performance specifically fitted for
BDEs that in the case of BCF was better than global models like
CAESAR BCF and BCFBAF of EpiSuite. This simple linear model of
two descriptors was based on a dataset of experiments on oligo-
chaetes. These aquatic organisms were chosen for their important
role in the environmental fate of the studied compounds as they
play the role of a mediator between the sediments and the other
aquatic species.

Besides the model prediction ability, the bioaccumulation mod-
els were selected in a way to reduce the used descriptors for more
simplicity and the number of congeners outside the AD to get high-
er reliability of predictions. The models were then validated as re-
quired by the OECD principles. Most of the used variables are
describing the electronic profile and relative bromine positions of
the congeners.

Results from BCF model, together with the estimated logBAF
and BMF, can be used as input data for environmental fate models
and risk assessment of this group of compounds.
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ABSTRACT: The European REACH regulation requires
information on ready biodegradation, which is a screening
test to assess the biodegradability of chemicals. At the same
time REACH encourages the use of alternatives to animal
testing which includes predictions from quantitative structure−
activity relationship (QSAR) models. The aim of this study
was to build QSAR models to predict ready biodegradation of
chemicals by using different modeling methods and types of
molecular descriptors. Particular attention was given to data screening and validation procedures in order to build predictive
models. Experimental values of 1055 chemicals were collected from the webpage of the National Institute of Technology and
Evaluation of Japan (NITE): 837 and 218 molecules were used for calibration and testing purposes, respectively. In addition,
models were further evaluated using an external validation set consisting of 670 molecules. Classification models were produced
in order to discriminate biodegradable and nonbiodegradable chemicals by means of different mathematical methods: k nearest
neighbors, partial least squares discriminant analysis, and support vector machines, as well as their consensus models. The
proposed models and the derived consensus analysis demonstrated good classification performances with respect to already
published QSAR models on biodegradation. Relationships between the molecular descriptors selected in each QSAR model and
biodegradability were evaluated.

1. INTRODUCTION

Substances which do not decay over a period of time pose a
potential threat of accumulation and spread in the environment
and organisms. Accumulation of persistent chemicals can, in the
long run, show to be harmful because of the continuous
exposure and the increasing chemical concentration in the
surroundings.1 The danger is, therefore, that the damages do
not have to be immediate but can immerse after a longer period
of time.
In Europe, legislators have consequently included persistency

in the evaluation of chemicals in the framework of the
European REACH regulation. REACH requires that chemicals
produced or imported in quantities of more than 1 ton per year
need information on ready biodegradation, which is a screening
test for the assessment of biodegradability.2 Thousands of
chemicals exist in consumer products, and these can eventually
end up in the environment. As an example, the EINECS list
comprises more than 100 000 chemicals registered as being on
the European Community market between 1971 and 1981.3

Only a limited number of chemicals from the EINECS list have
been tested for their biodegradability. Even for chemicals
produced or imported at more than 1000 tons per year, the
percentage of those with biodegradation data is merely 61%.4

To increase the amount of data, REACH encourages the use of
a weight-of-evidence approach, which means that all available
information should be considered, including predictions from

QSARs (quantitative structure−activity relationships) and read-
across.
Several QSAR models have in the past been built to predict

biodegradation with the use of different types of data, such as
chemical half-life, expert judgment, and biodegradation screen-
ing tests. Table 1 collects some of the already published QSAR
models which were built to classify molecules as ready or not
ready biodegradable.5−21 Both fingerprints (binary matrix
stating the presence and absence of fragments/properties)
and molecular descriptors have been used for modeling
biodegradation.
In the study of Cheng, a consensus model was built where

the average of several models were used to classify molecules.22

The consensus model could correctly predict all ready
biodegradable (RB) and not ready biodegradable (NRB)
molecules in an external validation set of 27 molecules but
the test set contained only four RB molecules. It was not
evaluated if the external validation set was a good
representation of the chemical space of the model, but four
molecules may not be enough to cover the chemical domain.
Several structural features have been found to increase the

time for biodegradation (for example halogens, chain
branching, nitro groups, polycyclic residues, heterocyclic
residues, and aliphatic ether bonds).1 On the other hand,
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some structural features have been found to enhance
biodegradability. These features include esters, amides,
hydroxyl groups, aldehyde groups, carboxylic acid groups,
unbranched linear alkyne chains and phenyl rings.1 However,
the presence of one of these structural features does not
indicate an RB or NRB molecule but should only be taken as
generalizations.1 A physicochemical property which have been
found to correlate with the rate of biodegradation is water
solubility where soluble molecules tend to be more easily
biodegradable compared to insoluble molecules.23 Molecular
weight has also been indicated as an important factor in relation
to biodegradation because molecules with a molecular weight
higher than 500 cannot be transported into bacterial cells.24 For
some large molecules like proteins and polysaccharides,
extracellular enzymes can degrade the molecules into smaller
entities which can pass through the cell membrane.1

The aim of this study was to build QSAR models to predict
ready biodegradation of chemicals by using different modeling
methods and types of molecular descriptors. Particular
attention was given to data screening and validation procedures
in order to carry out predictive models.25 A set of 837
molecules was used for calibration purposes, while 218
molecules were used to test the calibrated QSAR models. In
addition, models were further evaluated using an external
validation set consisting of 670 molecules. Data were carefully
screened to ensure accurate models based on correct
experimental values and molecular structures. The considered
classification modeling methods included linear, nonlinear, and
local models, as well as consensus models. These methods were
coupled with genetic algorithms in order to select the optimal
subsets of molecular descriptors. The proposed QSAR models
were interpreted in connection to the current knowledge on
biodegradation. Finally, since new molecular descriptors were
introduced in the proposed models, their link to biodegrad-
ability was discussed.

2. MATERIALS AND METHODS

2.1. Biodegradability Experimental Data. Experimental
data of the Japanese Ministry of International Trade and
Industry (MITI) test (I) were collected from the webpage of
the National Institute of Technology and Evaluation (NITE) of
Japan.26 The test is one of the six approved screening tests for
ready biodegradation from the Organization for Economic
Cooperation and Development (OECD).27 The MITI test
measures the biochemical oxygen demand (BOD) in aerobic
aqueous medium for 28 days (the original OECD protocol used

a 14 day test period).17 Chemicals with a BOD value higher
than 60% are considered as RB whereas those with a BOD
lower than 60% are regarded as NRB.22,27,28

The initial data set contained 1309 molecules. BOD values
and classification judgments from NITE were given for all the
collected molecules. The data set was screened to ensure that it
was in accordance with the OECD test protocol (301 C) and
that the correct chemical structures were used.

2.2. Data Screening. The screening procedure was carried
out on the basis of the steps described in the following
paragraphs and summarized in Table 2.

2.2.1. Analysis of the Molecular Structures. The simplified
molecular-input line-entry system (SMILES) format was used
as the molecular structure representation. SMILES strings were
collected from ChemSpider,29 using a KNIME workflow.30

When two CAS numbers were assigned to a chemical in the
MITI database, then only “Biodegradation: CAS Registry No.”
was taken into consideration. When several names were
specified in the MITI database, “Chemical Name in the Official
Bulletin” was considered unless “Biodegradation: Name of
chemical tested” was present. Here, 81 chemicals were removed
because their CAS Registry Number and chemical names were
not consistent in ChemSpider and the MITI database.

2.2.2. Handling of BOD Replicates. Replicate BOD values
were given for 223 compounds in the MITI database. Most
molecules with BOD replicates had three values. If one of the
three values was significantly deviating from the two other
BOD values according to Dixon’s Q test with a 90% confidence
limit,31 then the deviating value was removed. If a molecule had
a difference between BOD replicates higher than 20% and the
replicate values classified the molecule into different categories
(RB and NRB), then the molecule was removed. This was the

Table 1. Classification Models on Ready Biodegradation Published in the Literaturea

ref method descriptors training set (RB/NRB) test set (RB/NRB) test set Sn test set Sp

Loonen et al. 199916 PLSDA F (127 struct frag) 670 (Na/Na) 224 (Na/Na) 0.80 0.85
Tunkel et al. 200017 MLR D (43 struct frag + mw) 589 (254/335) 295 (131/164) 0.80 0.82
Tunkel et al. 200017 LR D (43 struct frag + mw) 589 (254/335) 295 (131/164) 0.79 0.83
Cheng et al. 201222 NB D (10 physicochemical) 1440 (529/911) 164 (62/102) 0.71 0.91
Cheng et al. 201222 kNN D (12 physicochemical) 1440 (529/911) 164 (62/102) 0.73 0.91
Cheng et al. 201222 SVM F (79 E-state keys) 1440 (529/911) 164 (62/102) 0.61 0.93

aThe original reference, modelling method, type and number of descriptors, number of molecules included in training and test sets (as well as
number of molecules for ready biodegradable and not ready biodegradable classes), sensitivity, and specificity obtained in the test set are reported for
each model. Partial least squares discriminant analysis (PLSDA), multiple linear regression (MLR), logistic regression (LR), naive Bayes (NB), k
nearest neighbours (kNN), support vector machines (SVM), fingerprints (F), molecular descriptors (D), structural fragments (struct frag),
molecular weight (mw), ready biodegradable (RB), not ready biodegradable (NRB), not available (Na), sensitivity (Sn, correctly predicted ready
biodegradable), specificity (Sp, correctly predicted not ready biodegradable). Consider that Sn and Sp are expressed as ratios, while some of the
original papers report them as percentages.

Table 2. Results from the Screening Procedure of the MITI
Data

reason for removal of molecules from the data set
number of removed

molecules

chemical name and CAS number not in accordance 81
BOD replicates had more than 20% difference and 24
classified differently
classification would change if nitrification was taken 4
into account
experimental and NITE classification did not agree 54
disconnected structures 91
total number of removed molecules 254
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case of 24 molecules. For the remaining molecules with
replicate values, the average BOD was used.
2.2.3. Unifying the Test Duration. In the MITI data set, 427

molecules had a test period shorter than 28 days, while the rest
had a test period of 28 days. The BOD values based on test
periods shorter than 28 days were extrapolated to 28 days as
proposed in the literature.20 This extrapolation could over- or
underestimate the BOD values. However, experimental data
was only used if the BOD value and the judgment by NITE
classified the molecule in the same class. It was therefore
assumed that classification errors due to the extrapolation could
be neglected.
2.2.4. Handling Molecules with Nitrification. If a molecule

contains nitrogen, then there is a possibility for nitrification in
the ready biodegradation test.27 Nitrification involves the
consumption of oxygen, and it is therefore necessary to exclude
this consumption from the BOD value since the BOD should
only measure the oxygen used by microorganisms. From the
collected data, it was not possible to know the extent of
nitrification. Four molecules which differed in their classi-
fication depending on the assumption of complete or no
nitrification were removed.
2.2.5. Handling Divergences between Experimental and

NITE Classification. As previously described, chemicals with
BOD values higher than 60% are classified as biodegradable.
When the experimental classification and the NITE judgment
did not agree, molecules were removed. This was the case for
54 molecules.
2.2.6. Handling Disconnected Structures. The MITI data

set included disconnected structures, such as salts, mixtures,
isomer mixtures, and polymers. All 91 disconnected structures
were removed because they could affect the subsequent
calculation of molecular descriptors.
Table 2 summarizes the screening steps and the correspond-

ing number of removed molecules. In the screening procedure,
254 molecules were removed. The remaining 1055 chemicals,
with 356 RB and 699 NRB molecules, were used for modeling.
The data set is provided in the Supporting Information file (SI)
of this article.
2.3. Molecular Descriptors. The previously collected

SMILES codes were used to calculate the molecular descriptors
in DRAGON software version 6.32 A two-dimensional
structural representation was selected instead of 3D structures
to avoid complex and irreproducible geometrical optimizations.
The use of 3D descriptors could add valuable chemical
information about the molecules. However, this type of
descriptor requires a geometrical optimization and this can be
an issue when applying the calibrated models to new molecules
since the difference between the 3D conformers can affect the
3D descriptors values.
The calculated molecular descriptors were included in the

following blocks of descriptors from DRAGON: constitutional
indices, ring descriptors, topological indices, 2D matrix−based
descriptors, functional group counts, atom-centered fragments,
atom-type E-state indices, and 2D atom pairs (Table 3). A
filtering of the descriptors was performed in DRAGON before
exporting the descriptor values. Constant, near constant, and
correlated descriptors were removed. In the latter case, for each
pair of descriptors with a correlation coefficient higher than
98%, the one showing the largest pair correlation with all the
other descriptors was excluded. A total number of 781
descriptors were exported from DRAGON for the subsequent
modeling analysis.

2.4. Modeling Methods. Three classification modeling
methods were applied in order to find the appropriate
relationship between molecular structures, encoded in molec-
ular descriptors, and the biodegradability of chemicals: k
nearest neighbors (kNN), partial least squares discriminant
analysis (PLSDA), and support vector machines (SVM). The
application of methods based on different mathematical
strategies aimed to better explore the chemical space and
balance potential biases related to each single modeling
algorithm.
The kNN classification rule is conceptually quite simple:33 a

molecule is classified according to the classes of the k closest
molecules, which means, it is classified according to the
majority of its k nearest neighbors in the descriptors space. In
this work, the Euclidean metric was used to measure distances
between molecules. The k value giving the lowest classification
error in cross-validation was selected as the optimal one.
PLSDA is a classification technique that profits the properties

of partial least squares regression (PLS2-based method) with
the discrimination power of a classification technique.34,35 It
finds fundamental relations between the matrix of descriptors
and the class vector by calculating latent variables (LVs), which
are orthogonal linear combinations of the original variables.
PLSDA models were optimized in cross-validation to find a
compromise between the classification performance and the
number of selected LVs.
SVM define a decision boundary that optimally separates two

classes by maximizing the distance between them.36,37 The
decision boundary can be described as an hyperplane that is
expressed in terms of a linear combination of functions
parametrized by support vectors, which consist in a subset of
training molecules. SVM algorithms search for the support
vectors that give the best separating hyperplane using a kernel
function. During optimization, SVM search the decision
boundary with maximal margin among all possible hyperplanes,
where the margin can be intended as the distance between the
hyperplane and the closest point for both classes. This
procedure was carried out by means of a kernel based on a
radial basis function.
Genetic algorithms (GAs) were applied to find the optimal

subset of molecular descriptors.38 GAs start from an initial
random population of chromosomes, which are binary vectors
representing the presence or absence of molecular descriptors.
An evolutionary process is simulated to optimize a defined
fitness function and new chromosomes are obtained by
coupling the chromosomes of the initial population with
genetic operations (crossover and mutation). The used fitness
function was the classification error calculated in cross-
validation.

Table 3. Number of Molecular Descriptors Initially
Calculated by Using DRAGON

DRAGON block number of descriptors

constitutional indices 32
ring descriptors 25
topological indices 34
2D matrix-based descriptors 84
functional group counts 88
atom centered fragments 69
atom-type E-state indices 37
2D atom pairs 412
total number of molecular descriptors 781
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Consensus analysis was also applied in order to combine
information and predictions obtained by the three different
modeling techniques. In fact, the consensus approach can
improve the quality of models by increasing their prediction
reliability.39 Consensus modeling has also been shown to
diminish the effects of noisy data. Individual models contain
varying amounts of noise, which can be reduced by averaging
the predictions of several models.40 The generation of a
consensus analysis can be based on different strategies such as
averaging, scoring, and probabilities.39−42 In this work, two
different consensus algorithms were adopted: (a) Each
molecule was assigned to the most frequent class out of the
three predictions obtained with the considered classification
methods (kNN, PLSDA, and SVM). (b) A molecule was
assigned only if the three models classified it in the same class;
otherwise, it was not assigned.
2.5. Model Validation. Molecules were randomly divided

into training and test sets, containing 80% and 20% of the total
number of considered molecules, respectively. The selection
was performed maintaining the class proportions, that is, the
number of test molecules of each class was proportional to the
number of training molecules of that class. The training set was
used to select molecular descriptors and to build the
classification models. Molecules of the test set were used just
to evaluate the predictive ability of the trained models.
During model optimization and descriptor selection, a cross-

validation procedure with five cancellation groups was used.
Classification models were evaluated on the basis of specificity
and sensitivity, which are the ability to correctly predict RB and
NRB molecules, respectively. In particular, specificity (Sp) and
sensitivity (Sn) were calculated with the following equations:

=
+

=
+

Sp
TN

TN FP
Sn

TP
TP FN

where, TN and TP are the number of true negatives and true
positives, and FN and FP are the number of false negatives and
false positives, respectively. Being a two-class model, consider
that the sensitivity of one class corresponds to the specificity of
the other class. In addition, the nonerror rate (NER) was
calculated as the average of specificity and sensitivity, while the
classification error rate (ER) was calculated as the complement
of NER. These indices were used in order to better estimate
classification performances in presence of a data set with
unequal number of molecules in each class. In this study error
rate, specificity, and sensitivity are expressed as ratios and not as
percentages.
The classification models were further evaluated using an

external validation set. This set was built merging two sources:
464 molecules of the data set modeled by Cheng et al.22 and
206 molecules of the Canadian DSL database (Domestic
Substances List).43 Initially, 1604 compounds were collected
from the set modeled by Cheng. These molecules were
screened in order to remove compounds already present in our
training or test sets. Moreover, the screening procedure used
for the molecules of the MITI data set (described in section
2.2) was applied on this set of molecules. Some CAS numbers
were missing, and thus, they were retrieved from ChemSpider
matching molecular SMILES and chemical names. After the
screening, 464 compounds were selected and included in the
external validation set.
The considered DSL list consisted of more than 3500

compounds which meet the categorization of the Canadian
Environmental Protection Act.44 According to this catego-

rization, compounds which are classified as persistent and
bioaccumulative can be considered as not biodegradable.
Therefore, the 420 persistent and bioaccumulative compounds
of the DSL list were considered for inclusion in the external
validation set. The SMILES structures were collected using the
KNIME workflow described in section 2.2. After removing
inorganic compounds, polymers, salts, and disconnected
structures, as well as 21 compounds overlapping with the
Cheng data set, 206 NRB molecules were added to the external
validation set. Summarizing, the external validation set included
a total of 670 compounds. The number of RB and NRB
molecules of training, test, and external validation sets are
summarized in Table 4.

2.6. Software. A KNIME workflow30 was used to collect
and check SMILES notations from ChemSpider database.29

Molecular descriptors were calculated by means of DRAG-
ON.32 SVM were calibrated using the library LIBSVM 3.1
implemented in C45 and compiled in MATLAB 7.13.46 GAs,
models fitting, and predictions were performed in MATLAB
7.1346 by means of routines built by the authors.

3. RESULTS AND DISCUSSION
3.1. Descriptor Selection and Model Calibration. The

selection of molecular descriptors was organized into two
subsequent steps in order to handle the large number of
calculated descriptors (781) and to avoid potential overfitting
of the QSAR models. GAs were separately calculated on each
block of molecular descriptors (Table 3). Descriptors selected
from each block were then merged and again GAs were used to
find the most appropriate subset of molecular descriptors to
calibrate the final QSAR models. The final models were
selected taking into consideration the ER in cross-validation
and a balanced ratio between the specificity and the sensitivity.
It was also important that the final models used a reduced
number of selected descriptors and for the PLSDA model also a
low number of latent variables. This was done in order to make
the models easy to interpret and at the same time to decrease
the risk of overfitting. The same procedure was used by
coupling GAs with the three considered modeling methods.
The classification model based on kNN, PLSDA, and SVM
included 12, 23, and 14 molecular descriptors, respectively. The
obtained QSAR models were validated using the molecules
included in both test and external validation sets, which did not
participate in the descriptor selection and model calibration.
Values of the selected molecular descriptors are provided in the
Supporting Information (SI) of this article.

3.2. Classification Performances of the QSAR Models.
The classification performances of the three QSAR models are
collected in Table 5. The three classification models showed
comparable performances. The ER in fitting and cross-
validation was equal to 0.14 for all the computed models,
while the error on the test set was equal to 0.14 with SVM and
slightly higher (0.15) with both PLSDA and kNN. This balance

Table 4. Number of Molecules Included in Training, Test,
and External Validation Set

data
ready

biodegradable
not ready

biodegradable total

training set 284 553 837
test set 72 146 218
external validation set 191 479 670
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between model performances on the training and test sets can
indicate the absence of overfitting, which is a possibility when
dealing with variable selection on high dimensional data.
Moreover, the quality of a QSAR classification model should
also be evaluated on the basis of its ability to correctly predict
each modeled class. Compared to other QSAR models on ready
biodegradation,16,17,22 the proposed models showed a good
balance between specificity and sensitivity, which never had a
difference higher than 0.11. In addition, specificity and
sensitivity values calculated on the training and test sets were
comparable, indicating robustness and reliability of the
proposed models. The SVM and kNN models showed higher
specificity than sensitivity for the RB class, that is, errors
associated to NRB molecules predicted as biodegradable were
lower. PLSDA, on the other hand, had the opposite behavior in
the fitting and cross-validation results but the test set result
showed the same tendency as the kNN and SVM models. The
reason for the PLSDA model to have a higher sensitivity than
specificity in the fitting and cross-validation results and the
opposite scenario for the test set was not known but since the
test set was chosen randomly, it is possible that this result is due
to random variation.
Afterward, predictions obtained by the three classification

QSAR models were merged and models based on the two
different consensus approaches previously described were
calculated. Classification performances of the consensus models
are shown in Table 5. When assigning molecules to the most
frequent class (consensus 1), classification results were
improved, maintaining a reasonable balance between specificity
and sensitivity on both the training and test sets. On the other
hand, when not assigning molecules in the presence of
divergence between the three classification models (consensus
2), ERs were further decreased. The classification ER on the
test molecules was equal to 0.09, with a percentage of not
assigned test molecules equal to 15%. This could mean that not
assigned molecules were associated with lower reliability of
prediction. In any case, the presence of 15% not classified
molecules was balanced by the good classification performances
of the consensus 2 model. As an example of the improved
performance it can be mentioned that consensus 2 gave a
specificity on the test set (ratio of correctly predicted NRB test
molecules) equal to 0.94. The presence of not classified
molecules is a matter of choice between high reliability with less
molecules predicted or predictions for all the molecules with a
lower reliability.
The external validation set supported the results for the three

QSAR and consensus models by giving results relatively close
to the cross-validation and test set validation. Results are

collected in Table 6. The ERs of kNN, SVM, PLSDA, and
consensus 1 were in the range between 0.17 and 0.18 and thus

comparable with those obtained on the training and test sets
(Table 5). The slightly higher ERs were expected due to the
different sources of the external validation molecules, which
could have slightly different classification thresholds with
respect to the MITI data set used to train the models.
Consensus 2 gave again the lowest ER on the external
validation set (0.13) and 13% of not assigned molecules.
Finally, all considered models showed the same conservative
behavior on the external validation set, that is, specificity was
always higher than sensitivity. Thus, NRB molecules were more
accurately predicted and models did not tend to classify them
as biodegradable.
Considering all the obtained results in classification

(summarized in Tables 5 and 6), as well as the model
complexity (represented by the number of selected molecular
descriptors), the proposed QSAR models and their consensus
models had equal or better classification performances with
respect to models already published in the literature (Table 1).
In particular, models selected in this study showed balanced
results on training, test, and external validation sets, suggesting
reliable predictions and the absence of potential overfitting.
This is in contrast to some of the models published in the
literature which showed greater difference between the
calibration and validation results, that is, ER equal to 0.00
and 0.18 on the training and test molecules, respectively.22

3.3. Descriptor Interpretation. One of the fundamentals
of QSAR is that models should be reduced to a set of
descriptors which is information rich but as small as possible, in
order to ensure stability of the model and reliability of its
predictions.47,48 The symbols of the descriptors, the descriptor

Table 5. Classification Results in Fitting, Cross-Validation, and on the Test Set of the Proposed QSAR Models and Their
Consensus Analysisa

fitting 5-fold cross-validation test set

model desc k/LVs/c ER Sn Sp ER Sn Sp ER Sn Sp

kNN 12 6 0.14 0.84 0.89 0.14 0.84 0.88 0.15 0.81 0.90
PLSDA 23 5 0.14 0.88 0.83 0.14 0.88 0.83 0.15 0.83 0.87
SVM 14 5 0.14 0.81 0.92 0.14 0.80 0.91 0.14 0.82 0.91
consensus 1 41 0.11 0.86 0.91 0.11 0.87 0.91 0.13 0.82 0.92
consensus 2 41 0.07 0.91 0.95 0.07 0.91 0.95 0.09 0.88 0.94

19% not assigned 20% not assigned 15% not assigned
aFor each model, the number of included descriptors, error rate (ER), specificity (Sp, correctly predicted not ready biodegradable), and sensitivity
(Sn, correctly predicted ready biodegradable) are provided. The optimal parameters, k for kNN, the number of latent variables (LVs) for PLSDA,
and the cost (c) for SVM, are reported in the table.

Table 6. Classification Results on the External Validation Set
of the Proposed QSAR Models and Their Consensus
Analysisa

ER Sn Sp

kNN 0.17 0.75 0.91
PLSDA 0.17 0.80 0.86
SVM 0.18 0.74 0.91
consensus 1 0.17 0.76 0.91
consensus 2 0.13 0.81 0.94

13% not assigned
aFor each model, error rate (ER), specificity (Sp, correctly predicted
not ready biodegradable), and sensitivity (Sn, correctly predicted ready
biodegradable) are provided.
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blocks, and a brief description of the molecular descriptors from
DRAGON which were selected in this study are collected in
Table 7. The numbers of molecular descriptors included in
each of the proposed models are comparable to those published
in the literature (Table 1). In order to evaluate how the selected
descriptors related to ready biodegradability, principal
component analysis (PCA) was performed separately on the
descriptors selected in the kNN and SVM models. PCA models
were calculated on the training set, while test set molecules
were projected onto the PCA model. Scores and loadings plots
were used to discuss the behavior of the selected descriptors in
relation to the knowledge on biodegradability found in the
literature. The descriptors included in the PLSDA model were
directly analyzed by means of the latent variables calculated by
PLSDA.
3.3.1. Molecular Descriptors of the kNN Model. The kNN

model included 12 descriptors (Table 7). The results of the
PCA analysis on the set of 12 descriptors are shown in Figure 1.

The score plot of the first and fourth principal components
(PC1 and PC4) explained together 34% of the variance and is
shown in Figure 1A, while the corresponding loading plot is
presented in Figure 1B.
The combination of PC1 and PC4 gave a reasonable

separation between RB and NRB molecules. The majority of
NRB molecules had positive scores on PC1 (Figure 1A). As
shown in the loading plot (Figure 1B), the descriptors which
were responsible for the highest positive values on PC1 were
nCb-, F01[N-N], F04[C-N], and F03[C-N]. These descriptors
encode information on substituted benzene and nitrogen. This
fits with the fact that NRB molecules contain more cyclic and
nitro groups than RB molecules.1 The descriptor “number of
heavy atoms” (nHM) is also located in the positive side of PC1,
and this can be related to the fact that RB molecules do not
contain heavy atoms. On the other hand, most of the RB
molecules had a low value on PC1. One of the descriptors
which were correlated with low values on PC1 was the

Table 7. List of Molecular Descriptors Selected in the QSAR Models

symbol description DRAGON block model

B01[C-Br] presence/absence of C−Br at topological distance 1 2D atom pairs PLSDA
B03[C-Cl] presence/absence of C−Cl at topological distance 3 2D atom pairs PLSDA
B04[C-Br] presence/absence of C−Br at topological distance 4 2D atom pairs PLSDA
C% percentage of C atoms constitutional indices kNN−PLSDA
C-026 R−CX−R atom centered fragments SVM
F01[N-N] frequency of N−N at topological distance 1 2D atom pairs kNN
F02[C-N] frequency of C−N at topological distance 2 2D atom pairs SVM
F03[C-N] frequency of C−N at topological distance 3 2D atom pairs kNN
F03[C-O] frequency of C−O at topological distance 3 2D atom pairs PLSDA
F04[C-N] frequency of C−N at topological distance 4 2D atom pairs kNN−PLSDA
HyWi_B(m) hyper-Wiener-like index (log function) from Burden matrix weighted by mass 2D matrix-based PLSDA
J_Dz(e) Balaban-like index from Barysz matrix weighted by Sanderson electronegativity 2D matrix-based kNN
LOC lopping centric index topological indices PLSDA
Me mean atomic Sanderson electronegativity (scaled on Carbon atom) constitutional indices PLSDA
Mi mean first ionization potential (scaled on carbon atom) constitutional indices PLSDA
N-073 Ar2NH/Ar3N/Ar2N−Al/R···N···R atom centered fragments PLSDA
nArCOOR number of esters (aromatic) functional group counts SVM
nArNO2 number of nitro groups (aromatic) functional group counts PLSDA
nCb- number of substituted benzene C(sp2) functional group counts kNN−SVM
nCIR number of circuits ring descriptors PLSDA
nCp number of terminal primary C(sp3) functional group counts kNN
nCrt number of ring tertiary C(sp3) functional group counts SVM
nCRX3 number of CRX3 functional group counts PLSDA
nHDon number of donor atoms for H-bonds (N and O) functional group counts SVM
nHM number of heavy atoms constitutional indices kNN
nN number of nitrogen atoms constitutional indices SVM
nN-N number of N hydrazines functional group counts PLSDA−SVM
nO number of oxygen atoms constitutional indices kNN−PLSDA
NssssC number of atoms of type ssssC atom-type E-state indices kNN−SVM
nX number of halogen atoms constitutional indices SVM
Psi_i_1d intrinsic state pseudoconnectivity index−type 1d topological indices PLSDA
Psi_i_A intrinsic state pseudoconnectivity indextype S average topological indices SVM
SdO sum of dO E-states atom-type E-state indices PLSDA
SdssC sum of dssC E-states atom-type E-state indices kNN
SM6_B(m) spectral moment of order 6 from Burden matrix weighted by mass 2D matrix-based SVM
SM6_L spectral moment of order 6 from Laplace matrix 2D matrix-based PLSDA
SpMax_A leading eigenvalue from adjacency matrix (Lovasz−Pelikan index) 2D matrix-based PLSDA
SpMax_B(m) leading eigenvalue from Burden matrix weighted by mass 2D matrix-based SVM
SpMax_L leading eigenvalue from Laplace matrix 2D matrix-based kNN−PLSDA−SVM
SpPosA_B(p) normalized spectral positive sum from Burden matrix weighted by polarizability 2D matrix-based PLSDA
TI2_L second Mohar index from Laplace matrix 2D matrix-based PLSDA
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descriptor giving information about carbon with two single
bonds and one double bond (SdssC). SdssC might be
correlated with RB molecules because according to the
literature, this class of molecules tend to be less branched
compared to the NRB ones.1 Also PC4 contained information
on molecular branching, since two of the most important
descriptors on this component were quaternary carbon and
carbon bound to three terminal atoms (NssssC, nCp). Having
the same upper right side orientation as the NRB, these two
descriptors are therefore negatively correlated with biodegrad-
ability, thus confirming that branching decreases biodegrada-
tion.
3.3.2. Molecular Descriptors of the PLSDA Model. The

PLSDA model included 23 descriptors (Table 7). The score
plot of the first and second latent variables (LV1 and LV2),
explaining together 33% of variance, is shown in Figure 2A.
RB molecules were grouped in the upper right side of the

score plot, having positive scores on both LV1 and LV2.
Matrix-based descriptors were placed on the extreme left side of
the loadings plot (Figure 2B), thus correlating with NRB.
These descriptors contain information on the molecular

branching, and they might therefore be connected with NRB
molecules since the degree of branching has an influence on a
molecule’s ability to biodegrade.1 Descriptors with information
on cycles, halogens, and nitrogen (nCIR, B03[C-Cl], F04[C-
N], B04[C-Br], B01[C-Br], N-073, and nCRX3) had negative
loadings on LV1. Cycles, halogens, and nitrogen are more often
seen in NRB compared to RB compounds, and their
connection with NRB molecules is therefore in alignment
with knowledge from the literature.1

Descriptors related to the presence of oxygen (nO, F03[C-
O], and SdO) had positive loadings on LV2 and, thus, were
responsible for the separation of the RB and NRB classes on
this latent variable. On the other side, descriptors related to the
presence of nitrogen and halogens (B03[C-Cl], nCRX3, nNN)
had negative loadings on LV2. This result fits with the
knowledge on biodegradation, since the presence of functional
groups with oxygen atoms increase biodegradability, while NRB
molecules tend to have more nitrogen and halogens.1

3.3.3. Molecular Descriptors of the SVM Model. The SVM
model included 14 molecular descriptors (Table 7). The results
of the PCA analysis on this set of 14 descriptors are shown in

Figure 1. PCA of the descriptors used in the kNN model. Scores plot (A) and loadings plot (B) of the first and fourth principal components
(explained variance equal to 34%). Ready biodegradable molecules are colored in black, and not ready biodegradables are in red; training molecules
are marked with empty circles, and test molecules are marked with full circles. Labels of the molecular descriptors refer to symbols listed in Table 7.

Figure 2. Scores plot (A) and loadings plot (B) of the first and second latent variables of the PLSDA model (explained variance equal to 33%).
Ready biodegradable molecules are colored in black, and not ready biodegradables are in red; training molecules are marked with empty circles, test
molecules are marked with full circles. Labels of the molecular descriptors refer to symbols listed in Table 7.
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Figure 3. The score plot of the first and fourth principal
components (PC1 and PC4), explaining together 32% of
variance, is shown in Figure 3A.
The first principal component was able to separate the two

classes in the presence of some overlap (Figure 3A). In
particular, RB molecules were characterized by negative scores,
while the majority of NRB molecules were placed on the right
side of PC1, having positive scores. The majority of the
descriptors had positive loadings on PC1, as shown in Figure
3B. The most important descriptors for PC1 had information
on molecular branching, aromatic groups and halogens
(SpMax_L, SM6_B(m), C-026, nCb-, nX), as well as the
presence of nitrogen (NssssC, F02[C-N], nN). All these
descriptors are related to the NRB class of molecules, which is
characterized by positive scores on PC1. This is in accordance
with the literature since NRB molecules in general have more
nitrogen groups and aromatic groups with halogens compared
to RB molecules.1 PC4 is less successful in separating the two
classes. However, the nCrt descriptor, which encodes
information about rings, had the greatest positive loading
value on PC4. PC4 seems to show a tendency for lower values
among the RB molecules compared to the second class, which
is expected, since rings are more often seen in NRB.
Summarizing, descriptors selected in each QSAR model

encoded similar information about the presence of halogens,
chain branching, nitro groups, rings and some functional
groups, which are related to biodegradability. Moreover, it was
seen that the information on the relationships between
chemical structures and biodegradability was consistent in the
three QSAR models even though the descriptors were selected
independently in each of the three proposed models.
3.4. Improving Interpretability of the Models. The

proposed models for ready biodegradability are based on
several substructure descriptors but also on some matrix-based
molecular descriptors (HyWi_B(m), J_Dz(e), SM6_B(m),
SM6_L, SpMax_A, SpMax_B(m), SpMax_L, SpPosA_B(p),
TI2_L). These descriptors are calculated from Laplacian (L),
Barysz (Dz), and Burden (B) matrices, which are derived from
the adjacency matrix (A). The adjacency matrix, or vertex
adjacency matrix, is an important source for the calculation of
molecular descriptors.49 This is one of the fundamental graph
theoretical matrices and represents the whole set of

connections between adjacent pairs of atoms.50 The adjacency
matrix gives information about branching, which is demon-
strated to be relevant for biodegradation modeling. This was
confirmed in the PCA plots, where these matrix-based
descriptors were always related to NRB compounds. Never-
theless, matrix-based molecular descriptors were never included
before in already published biodegradation QSAR models and
thus their relationship with biodegradation could not be
directly verified and needs further investigation.
2D matrix-based descriptors are topological indices calcu-

lated by applying a set of basic algebraic operators to different
graph-theoretical matrices representing the H-depleted molec-
ular graph of molecules.49

Laplace matrix L is obtained by the difference between a
diagonal vertex degree matrix and the adjacency matrix A:

δ=
− ∈
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where δi is the ith vertex degree, that is, the number of vertices
adjacent to vertex i and E(G) is the set of graph edges.
Burden matrices B(w) are augmented adjacency matrices

defined to account for heteroatoms and bond multiplicity as the
following:
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The diagonal elements are atomic carbon-scaled properties
(e.g., mass (m), polarizability (p)); the off-diagonal elements
corresponding to pairs of bonded atoms are the square roots of
conventional bond orders π* (i.e., 1, 2, 3, and 1.5 for single,
double, triple, and aromatic bonds, respectively); all other
matrix elements are set at 0.001.
Barysz matrices Dz(w) are weighted distance matrices that

were defined on the basis of a generalization of Barysz

Figure 3. PCA of the descriptors used in the SVM model. Scores plot (A) and loadings plot (B) of the first and fourth principal components
(explained variance equal to 32%). Ready biodegradable molecules are colored in black, and not ready biodegradables are in red; training molecules
are marked with empty circles, and test molecules are marked with full circles. Labels of the molecular descriptors refer to symbols listed in Table 7.
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weighting scheme in terms of conventional bond orders π* and
any atomic property:51
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where wC is any atomic property (e.g., Sanderson electro-
negativity (e)) of the carbon atom and wi the corresponding
value of the ith atom; dij(w,π*) is a weighted topological
distance calculated by summing the edge weights over all bonds
involved in the shortest path between vertices vi and vj; the
subscripts b(1) and b(2) represent the two vertices incident to
the considered bth edge.
The topological indices that were derived from these graph

matrices and found to be related to ready biodegradability of
organic compounds are briefly defined below.
The hyper-Wiener-like index, HyWi_B(m), is calculated

according to the following formula:
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where nSK is the number of non-H atoms and defines the
matrix dimension. This index is sensitive to molecule size and
for a given size it takes minimum values for linear hydrocarbons
while increases both with the number of heavy atoms and
branching involving multiple bonds.
The Balaban-like index, J_Dz(e), is similar to Randic ́

connectivity index but calculated with a normalization factor
that makes it independent of the molecule size and cyclicity
degree:

∑ ∑

_ =
+

=

−

= +

−a VS VSDz Dz

J Dz(e)
nBO

nCIC 1

[ ( ; e) ( ; e)]
i j i

ij i j
1

nSK 1

1

nSK
1/2

where the vertex degrees are replaced by the matrix row sums
VS and elements aij of the adjacency matrix are introduced to
account only for contributions from bonded atom pairs; nBO is
the number of graph edges, and nCIC the number of
independent rings in the molecule.
SpMax_A, SpMax_B(m), SpMax_L, SpPosA_B(p), SM6_B-

(m), SM6_L, and TI2_L are spectral indices calculated as
function of the matrix eigenvalues.52 In particular, SpMax is the
leading eigenvalue, that is, the largest eigenvalue of the matrix
spectrum, and SpPosA is the normalized spectral positive sum
index, that is, the sum of the positive eigenvalues divided by the
number of non-H atoms in order to reduce molecule size
influence.53 The leading eigenvalue of the adjacency matrix A
(SpMax_A) is the well-known Lovasz−Pelikan index,54 which
was demonstrated to be related to molecular branching. Both
SpMax_A and SpMax_L demonstrated to be able to character-
ize a large group of NRB molecules containing halogens
(especially F and Cl) as the substituents in nonterminal
positions along the molecular structure.
The spectral moment of sixth order (SM6) is the sum of the

sixth power of all of the matrix eigenvalues. Since SM6_B(m)
and SM6_L are derived from modified adjacency matrices,
these indices are to some extent related to the number of self-
returning walks of length six in the molecule, which can also be
expressed as linear combinations of counts of certain fragments
contained in the molecular graph.55 These indices tend to
increase with molecular branching and cyclicity. Moreover, the
index SM6_B(m) is able to characterize a group of about 50
NRB compounds including heavy atoms (e.g., Sn and Br) and
with large ramification or number of rings. The second Mohar
index (TI2_L) is calculated as the inverse of the smallest
nonzero eigenvalue of the Laplace matrix, which is weighted by
the number of non-hydrogen atoms.56 This index does not
account for the presence of different heteroatoms in molecules
but is very sensitive to structural features such as branching and
cyclicity. It increases with the number of non-H atoms, and in a
series of equal-sized molecules it discriminates between linear
chains (high values) and branched/cyclic structures that
typically are not ready biodegradable.
In order to improve the interpretability of the proposed

QSAR models, matrix-based descriptors were further analyzed
to elucidate the information they encode. For this purpose,
ordinary least squares (OLS) regression was used to investigate
the existing relationships between these targeted matrix-based
descriptors and other DRAGON molecular descriptors, which

Table 8. List of OLS Models Built to Describe the Matrix-Based Descriptorsa

descriptor R2 Q2 model equations

HyWi_B(m) 0.94 0.94 − + + + _ _0.297 0.001MW 0.745MWC01 3.446Eta alpha A

J_Dz(e) 0.82 0.79 − − + − +1.712 0.376nCIC 2.212Xindex 0.215NRS 1.143piPC02

SM6_B(m) 0.87 0.86 + + ‐ + _ _
+

3.432 0.005ZM1Mad 1.927B01[C Br] 5.88Eta alpha A

0.566piPC02

SM6_L 0.99 0.99 − + +0.416 1.04SRW08 3.683X0A

SpMax_A 0.96 0.95 + −0.495 0.267SRW08 0.087RDCHI

SpMax_B(m) 0.78 0.78 + ‐ + ‐ +3.267 6.509B01[C X] 3.193B01[C Br] 0.135piPC04

SpMax_L 0.93 0.93 − + + −8.339 1.678SRW08 9.693X1A 1.49MWC01

SpPosA_B(p) 0.86 0.86 + _ _ − +1.613 0.858Eta alpha A 0.831Mi 0.004C%

TI2_L 0.94 0.94 + +1.763 1.747MSD 2.408RDCHI
aThe squared correlation coefficient in fitting (R2), in cross-validation with five cancellation groups (Q2), and the model equations are provided.
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were used as the independent variables in the regression
models. A variable selection procedure based on GAs was
carried out to search for the optimal subset of DRAGON
descriptors related to each matrix-based descriptor. Regression
models were optimized on the basis of the squared correlation
coefficient Q2 calculated in cross-validation with five
cancellation groups.57,58

In addition to the already calculated descriptors (Table 3),
the following DRAGON blocks were considered for this
analysis: connectivity indices, topological information indices,
walk and self-returning walk counts, and Extended Top-
ochemical Atom (ETA) indices. These indices were selected as
they encode to different extent information about molecular
branching.49 Statistics of the OLS models calculated for each
matrix-based descriptor are collected in Table 8. Regression
models included a maximum number of four descriptors; high
and balanced performance in fitting (R2) and cross-validation
(Q2) demonstrated good consistency as well as ability in
describing the chemical information encoded by matrix-based
descriptors. In particular, the regression models for HyWi_B-
(m), SM6_L, SpMax_A, SpMax_L, and TI2_L had R2 and Q2

higher than 0.9; the models for SM6_B(m) and SpPosA_B(p)
gave R2 and Q2 higher than 0.8, while just two models
(J_Dz(e), SpMax_B(m)) had Q2 between 0.78 and 0.79.
On the basis of these results, it could be concluded that the

considered matrix-based descriptors mainly encode chemical
information related to branching, cyclicity, and molecular size,
which were demonstrated to be important factors related to
biodegradability. In addition, the obtained OLS models also
proved that matrix-based descriptors are highly information
rich, since they were modeled by several other descriptors, each
encoding different chemical information (Table 9). This feature
makes matrix-based descriptors particularly interesting to
QSAR modeling, since using descriptors able to encode
different molecular features can lead to more parsimonious
models including a limited number of variables.

4. CONCLUSIONS

The aim of this study was to develop reliable classification
QSAR models for ready biodegradability. Experimental values
were collected from the MITI database and screened to obtain
a consistent data set that meets the requirements of the OECD
guidelines. The structure representations of the compounds, as
well as the collected experimental data, were accurately verified.
The resulting data set was split into training and test sets before
modeling. Genetic algorithms coupled with three different
classification algorithms (kNN, PLSDA, and SVM) were
applied in order to select the optimal subset of molecular
descriptors. The three models and the derived consensus
analysis demonstrated good statistics in fitting and cross-
validation as well as high accuracy in prediction for the test set
with respect to already published models on biodegradation.
The lowest ER in classification was reached by means of kNN,
which gave an ER equal to 0.12 for the test set, and consensus
analysis, which gave an error rate equal to 0.06 with 23% of not
assigned molecules. The developed models were further
validated using an external validation set collected from
different sources, and good classification performances were
obtained. The proposed models showed a balance between
specificity and sensitivity values, as well as similar performances
in training, test, and external validation sets, which can indicate
the absence of overfitting. The potential relationships between

the selected molecular descriptors and biodegradability were
evaluated by comparing with information from the literature.
Matrix-based molecular descriptors, which were used for the

first time to model biodegradability, were further analyzed. The
information they encoded was evaluated by means of regression
OLS models based on other types of molecular descriptors.
Relationships between matrix-based descriptors and biodegrad-
ability were highlighted, since they contained information about
molecular branching and size. In general, this family of
molecular descriptors appeared to be interesting for QSAR
modeling, since they were information rich and thus by using
them the total number of descriptors to be used to model a
defined endpoint could be reduced.
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Table 9. Molecular Descriptors Selected in the OLS Models
Describing the Matrix-Based Descriptors

symbol description
DRAGON
Block

B01[C-Br] presence/absence of C−Br at topological
distance 1

2D atom pairs

B01[C-X] presence/absence of C−X at topological
distance 1

2D atom pairs

C% percentage of C atoms constitutional
indices

Eta_alpha_A eta average core count ETA indices
Mi mean first ionization potential (scaled on

Carbon atom)
constitutional
indices

MSD mean square distance index (Balaban) topological
indices

MW molecular weight constitutional
indices

MWC01 molecular walk count of order 1 walk and path
counts

nCIC number of rings (cyclomatic number) ring descriptors
NRS number of ring systems ring descriptors
piPC02 molecular multiple path count of order 2 walk and path

counts
piPC04 molecular multiple path count of order 4 walk and path

counts
RDCHI reciprocal distance sum Randic-like index connectivity

indices
SRW08 self-returning walk count of order 8 walk and path

counts
X0A average connectivity index of order 0 connectivity

indices
X1A average connectivity index of order 1 connectivity

indices
Xindex Balaban X index information

indices
ZM1Mad first Zagreb index by Madan vertex

degrees
topological
indices
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Abstract: One of the OECD principles for model validation requires defining the 
Applicability Domain (AD) for the QSAR models. This is important since the reliable 
predictions are generally limited to query chemicals structurally similar to the training 
compounds used to build the model. Therefore, characterization of interpolation space is 
significant in defining the AD and in this study some existing descriptor-based approaches 
performing this task are discussed and compared by implementing them on existing 
validated datasets from the literature. Algorithms adopted by different approaches allow 
defining the interpolation space in several ways, while defined thresholds contribute 
significantly to the extrapolations. For each dataset and approach implemented for this 
study, the comparison analysis was carried out by considering the model statistics and 
relative position of test set with respect to the training space. 

Keywords: QSAR; model validation; Applicability Domain; interpolation space 
 

1. Introduction 

The quantitative relationship between chemical structures and their properties can be established 
mathematically by means of QSARs and thus, given that the structural information is available, QSAR 
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models can be used theoretically to predict the properties for those chemicals [1]. Due to increasing 
application of such QSAR models, there had been rising concerns with respect to their predictions [2]. 
Derivation of QSAR models is based primarily on training sets which are structurally limited and thus 
their applicability to the query chemicals is limited. In other words, the model can provide more 
reliable prediction for the external compounds that fall within these structural limitations [3]. 

A new European legislation on chemicals—REACH (Registration, Evaluation, Authorization and 
restriction of Chemicals) came into force in 2007, which deals with risk assessment of chemicals for 
their safe use, thus contributing to the human health and environment [4]. This law allows and 
encourages the use of QSAR model predictions when the experimental data are not sufficiently 
available or as supplementary information, provided validity of the model is justified [5]. Five OECD 
principles for QSAR validation adopted in November 2004 are the requisites of any given model 
proposed for regulatory use and can be significant to demonstrate the validity of QSAR models, which 
is crucial for REACH implementation.  

According to these OECD principles, the QSAR model should have: (1) a defined end point; (2) an 
unambiguous algorithm; (3) a defined domain of applicability; (4) appropriate measures for  
goodness-of-fit, robustness and predictivity and (5) a mechanistic interpretation, if possible [6]. The 
principles, in general, provide user with all the essential information regarding end-point being 
predicted, model algorithm used, scope of the model and associated limitations, model performance 
and understanding of how the model descriptors are associated with predicted endpoint [5]. This paper 
primarily focuses on the third OECD principle that deals with defining the Applicability Domain (AD) 
of a QSAR model. 

The principle of Applicability Domain requires users to define the model limitations with respect to 
its structural domain and response space. As discussed above, the reliable QSAR predictions are 
limited generally to the chemicals that are structurally similar to ones used to build that model [7–9]. 
The query chemicals that satisfy the scope of the model are considered as within the AD and classified 
as interpolated whereas the rest are extrapolations and thus, outside the AD. Reliability in a given 
model is higher for predictions falling within the AD and it is most likely to be unreliable for the 
extrapolations. This implies that the fourth OECD principle dealing with model accuracy is highly 
dependable on the model’s AD since here the chemical space associated with reliable predictions is 
identified. Molecular descriptors used to build the model also play a significant role in defining the 
AD. Thus, if a query chemical differs in terms of the structural limitations defined by the training set,  
it can be considered as an outlier for that chemical space. 

Defining a model’s AD is essential in order to determine the subspace of chemical structures that 
could be predicted reliably. In other words, the degree of generalization of a predictive model depends 
on how broad the domain of applicability is. If the domain is too restricted, this implies the model is 
capable of giving reliable predictions only for limited chemical structures. Also, for regulatory 
purposes, like in REACH, it is essential for the user to provide all possible documentation about the 
model’s AD. This is beneficial for the user to see if the endpoint for the chemical structures under 
evaluation can be reliably predicted. Also, for the cases where several QSAR models are available for 
chemicals of interest, the knowledge of AD can be applied to compare how reliable the predictions 
could be for different models [1]. 



Molecules 2012, 17 4793 
 

Characterization of the interpolation space is very significant to define the AD for a given QSAR 
model. Several AD approaches have been already proposed and primarily they all differ in the way 
how they characterize the interpolation space defined by the descriptors used. They can be classified 
into following four major categories based on the methodology used for interpolation space 
characterization in the model descriptor space: Range-based methods, Geometric methods, Distance-
based methods and Probability Density Distribution based methods [1–5]. 

In this study, the above mentioned AD approaches are discussed and compared, focusing on the 
methodology used and criteria followed to consider a query structure to be within (or outside) the 
Applicability Domain. The major goal of this paper is to provide a detailed comparison of the results 
obtained, using these different AD approaches on some selected datasets. Two models from the 
CAESAR project, which predict the bioconcentration factor (BCF), were chosen as the case  
study [10,11]. Apart from their own test sets, an alternative test set from EPI Suite package BCFBAF 
v3.00 was chosen to facilitate further evaluation of AD approaches [12,13]. The number of test 
compounds considered outside AD for different approaches was calculated and the reliability of these 
results was further interpreted by analyzing both, the prediction statistics and the relative position of 
test compounds with respect to the training space. For all distance measures in this study, the pattern of 
test compounds considered outside the AD was understood by implementing the distance-based 
approaches with several threshold defining strategies that considered both, the distances of training 
compounds from their mean as well as the average distances of training compounds from their first 5 
nearest neighbors. Finally, comparing the results derived with this analysis, most preferred thresholds 
for distance-based approaches were chosen for their overall comparison with other AD approaches.  

2. Applicability Domain Methods  

The basis for interpolation is to predict the function value at a given point when the values at 
neighboring points are known. There are several descriptor based approaches by which the interpolation 
regions in multivariate space can be estimated for QSAR models. In a given p-dimensional descriptor 
space, estimations for new query chemicals are then obtained using the training data [1]. All the 
approaches used for this study were implemented using MATLAB [14] and are discussed briefly in 
this section informing their main features to define the interpolation space as well as the thresholds 
criterion used.  

2.1. Range-Based and Geometric Methods 

These are considered as the simplest methods to characterize a model’s interpolation space. 

2.1.1. Bounding Box 

This approach considers the range of individual descriptors used to build the model. Assuming a 
uniform distribution, resulting domain of applicability can be imagined as a Bounding Box which is a 
p-dimensional hyper-rectangle defined on the basis of maximum and minimum values of each 
descriptor used to build the model. The sides of this hyper-rectangle are parallel with respect to the 
coordinate axes. However, there are several drawbacks associated with this approach: since only 
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descriptor ranges are taken into consideration, empty regions in the interpolation space cannot be 
identified and also the correlation between descriptors cannot be taken into account [1,2].  

2.1.2. PCA Bounding Box 

PCA transforms the original data into a new coordinate system by the rotation of axes, such that the 
new axes are orthogonal to each other and aligned in the direction having maximum variance within 
the data. These new axes are called Principal Components (PCs) representing the maximum variance 
within the dataset [15]. A M-dimensional hyper-rectangle (where M is the number of significant 
components) is obtained similar to the previous approach by considering the projection of the 
molecules in the principal component space, however taking into account the maximum and minimum 
values for the PCs. The implementation of Bounding Box with PCA can overcome the problem of 
correlation between descriptors but empty regions within the interpolation space still remains an  
issue [1,2,5]. Moreover, selection of appropriate number of components is significant to implement 
this approach. 

2.1.3. Convex Hull 

With this approach, interpolation space is defined by the smallest convex area containing the entire 
training set. Implementing a Convex Hull can be challenging with increasing data complexity [16]. For 
two or three dimensional data, several algorithms are proposed; however, increase in dimensions 
contribute to order of complexity. In addition, set boundaries are analyzed without considering the 
actual data distribution. Similar to the Range-based approaches, Convex Hull cannot identify the 
potential internal empty regions within the interpolation space [1,2]. 

2.2. Distance-Based Methods 

These approaches calculate the distance of query compounds from a defined point within the 
descriptor space of the training data. The general idea is to compare distances measured between 
defined point and the dataset with a pre-defined threshold. The threshold is a user defined parameter 
and is set to maximize the separation of dense regions within the original data. However, the cut-off 
value does not entirely reflect the actual data density [1–5]. No strict rules were evident from the 
literature about defining thresholds for distance-based approaches and thus it is up to the user how to 
define them. In this study, for all the distance measures, several possible threshold defining strategies 
were considered, the derived results were compared and finally the appropriate thresholds were chosen 
to overall compare their results with the ones derived from Range-based, Geometric and Probability 
Density Distribution based approaches. Some commonly used and most useful distance measures in 
QSAR studies include Mahalanobis, Euclidean and City Block distances [2,5].  

The unique feature associated with Mahalanobis measure is the co-variance matrix which can 
handle the correlated descriptors. The other two distance measures lack this characteristic and thus 
require an additional treatment; for example, PC rotation to correct for the correlated axes. Iso-distance 
contours constitute the regions having constant distance measures and generally their shape differs 
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with approaches according to the distance measure considered, for example, ellipsoids for 
Mahalanobis and spherical in case of Euclidean distances [2].  

Apart from them, similar approaches based on leverage are quite recommended for defining AD of 
a QSAR model [17]. Leverage of a query chemical is proportional to its Mahalanobis distance measure 
from the centroid of the training set. The leverages are calculated for a given dataset X by obtaining 
the leverage matrix (H) with the equation below: 

H = X XTX
-1

XT (1) 

where X is the model matrix while XT is its transpose matrix. 
Diagonal values in the H matrix represent the leverage values for different points in a given dataset. 

Compounds far from the centroid will be associated with higher leverage and are considered to be 
influential in model building. Leverage is proportional to Hotellings T2 statistic and Mahalanobis 
distance measure but can be applied only on the regression models. The approach can be associated 
with a warning leverage, generally three times the average of the leverage that corresponds to p/n 
where p is the number of model parameters while n is the number of training compounds. A query 
chemical with leverage higher than the warning leverage can be associated with unreliable predictions. 
Such chemicals are outside the descriptor space and thus be considered outside the AD [1,2,5]. In this 
study, the corresponding Mahalanobis measures were used. 

K nearest Neighbors Approach 

This approach is based on providing similarity measure for a new chemical with respect to the 
compounds within the training space. The similarity is accessed by finding the distance of a query 
chemical from nearest training compound or its distances from k nearest neighbors in the training set. 
If these distance values are within the user defined threshold, the query chemical with higher similarity 
is indicated to have higher number of training neighbors and therefore, is considered to be reliably 
predicted. Thus, similarity to the training set molecules is significant for this approach in order to 
associate a query chemical with reliable prediction [9]. 

2.3. Probability Density Distribution-Based Method 

Considered as one of the most advanced approaches for defining AD, these methods are based on 
estimating the Probability Density Function for the given data. This is feasible by both, parametric 
methods that assume standard distribution and non parametric methods which do not have any such 
assumptions concerning the data distribution. A main feature of these approaches is their ability to 
identify the internal empty regions. Moreover, if needed, the actual data distribution can be reflected 
by generating concave regions around the interpolation space borders [1,2].  

Generally these approaches are implemented by estimating probability density of the dataset 
followed by identifying Highest Density Region that consists of a known fraction (given as user input) 
from the total probability mass [1]. 

Potential is created for each molecule in the training set such that it is highest for that molecule and 
decreases with distance. Once the potential is calculated for all the compounds, global potential is 
obtained by adding the individual potentials thus indicating the probability density [18,19].  
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There are several types of potential functions; however, for this study Gaussian function was 
considered. Given two molecules xi and xj, it can be determined as below: 

22

1 1
2 2

i j

i j

x ,x exp
s s x x

 (2)  

where i jx ,x  is the potential induced on xj by xi and width of the curve is defined by smoothing 
parameter s. The cut off value associated with Gaussian potential functions, namely fp, can be 
calculated by methods based on sample percentile [18]: 

1qp i j jf f j f f  (3)  

with q p
100

n , where p is the percentile value of probability density, n is the number of compounds 

in the training set and j is the nearest integer value of q. Test compounds with potential function values 
lower than this threshold are considered outside the AD. 

2.4. Other AD Approaches 

Apart from the AD strategies discussed above, several other approaches were published in literature 
to define the AD of QSAR models, some of which are briefly discussed below. These approaches were 
not considered for this comparative study since the analysis was limited to the classical AD 
methodologies used for interpolation space characterization in the model descriptor space.  

2.4.1. Decision Trees and Decision Forests Approach 

Based on the consensus prediction of Decision Trees (DT), this approach specifies the AD in terms 
of prediction confidence and domain extrapolation. The main idea here is to minimize the overfitting 
which can be achieved by combining the DTs and keeping the differences within different DTs to 
maximum possible. Predictions from all the combined DTs are averaged in order to determine the 
prediction confidence for a given compound while domain extrapolation provides the prediction 
accuracy for that compound outside the training space [1,20,21]. 

2.4.2. Stepwise Approach to Determine Model’s AD 

This approach is divided into four stages applied in a sequential manner. In the first stage, a query 
chemical is checked to fall within the range of variation of the physicochemical properties of training 
set compounds. During the second stage, structural similarity is found within the chemicals that are 
correctly predicted by the model. The third deals with mechanistic check while the reliability of 
simulated metabolism is taken into account in the final stage. To be considered within the AD, a query 
compound is required to satisfy all the conditions specified within these four stages. As a part of this 
rigorous approach, a chemical is evaluated for similarity, metabolic and mechanistic check, thus 
addressing the reliability of predictions and allowing a better assessment of model’s AD [3,5]. 
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2.5. Models and Test Sets 

This section deals with models and datasets selected for the comparison of the different  
AD approaches.  

2.5.1. CAESAR Models  

Bioconcentration factor, which is one of the most important endpoints for environmental fate of 
chemicals, was chosen for comparing the results derived from the different AD approaches considered 
in this study. As the procedure requires deep knowledge of the model and also information about its 
datasets and building methods, two already existing models to predict BCF were considered [10,11].  

The QSAR models (Model 2 and Model 5) used in this study were the selected best two BCF 
models developed under the EU project CAESAR taking into account the REACH requirements [10]. 
These two models based on Radial Basis Function Neural Network (RBFNN) [22] were rebuilt, each 
with five descriptors that were calculated using Dragon 5.5 [23].The obtained statistics are summarized 
in Table 1. 

Table 1. An overview of selected CAESAR models. 

Model Training set Test set 
R2 (a) RMSE (b) Q2 (c) RMSEP (d)

1) Model 2 0.804 0.591 0.797 0.600 
2) Model 5 0.810 0.581 0.774 0.634 

(a) Determination coefficient R2; (b) Root-mean-square error RMSE; (c) Predictive squared correlation 
coefficient Q2; (d) Root-mean-square error of prediction RMSEP. 

2.5.2. CAESAR and EPI Suite Test Sets 

The CAESAR dataset consisted of 473 compounds, randomly divided into a training set of 378 
compounds and a test set of 95 compounds, as explained in the original study [10]. The Q2 and RMSEP 
values for the test sets of CAESAR Model 2 and Model 5 are reported in Table 1. 

For a better evaluation of AD approaches, in addition to the CAESAR test set, the validation set of 
the BCF model from EPI Suite package BCFBAF was selected as an additional test set [12,13]. This 
test set was comprised of 158 compounds, from which one compound was discarded due to structure 
inadequacy while other 49 compounds were not considered due to overlapping with the CAESAR 
training set compounds.  

3. Results and Discussion 

For the AD approaches discussed earlier, general rules to define thresholds are discussed in the 
literature except for distance-based approaches. Thresholds can be defined in several ways for the 
distance-based approaches, thus resulting in an ambiguity over selection of appropriate thresholds for 
this study. As a result, before an overall comparison of results with different AD approaches could be 
performed, thresholds for distance-based approaches had to be finalized.  
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To decide upon appropriate thresholds for distance-based approaches, several threshold defining 
strategies were implemented for the different distance measures considered in this study. All these 
strategies discussed below required calculating distances of training compounds from their centroid. 
To evaluate further possibilities, the study was extended implementing these strategies however 
considering average distance of each training compound from their first 5 nearest neighbors. Model 
statistics were recorded each time and the most appropriate distance based thresholds were then 
selected from above mentioned results for all distance measures considered in this study. Until this 
point, all the four categories of AD approaches were associated with appropriate thresholds and finally 
subjected to overall comparison of results. 

The results were tabulated informing the model’s statistics for each AD approach on the compounds 
considered inside the applicability domain using the following parameters:  

i) Number of test compounds considered outside the domain of applicability; 
ii) Predictive squared correlation coefficient Q2 [24,25]: 
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where iŷ  is the predicted value for the i-th compound and iy  its experimental value; nTR is the number 
of compounds in the training set and nEXT the number in the test set; TRy  is the mean response of the 

training set. Moreover, in order to somehow quantify the role of the compounds considered inside and 
outside AD, RMSEP  was defined by the following equation:  

OUT INRMSEP RMSEP RMSEP  (5)  

where RMSEPOUT is the root mean square error in prediction for the test compounds outside AD, while 
RMSEPIN is the root mean square error in prediction for the test compounds inside AD. Negative 
values indicate that the compounds detected outside AD are predicted better than the compounds 
inside AD, thus highlighting some possible drawbacks in the definition of interpolation space. On the 
contrary, positive values of RMSEP  indicate a reliable partition for the compounds detected as inside 
and outside AD. 

Multi Dimensional Scaling (MDS) was used to visualize the relative position of test compounds 
with respect to the training space. MDS enables the representation of p-dimensional data by means of a 
2D plot. The implementation allowed a better understanding of how the interpolation space was 
characterized and if the compounds outside the AD were more concentrated around the training set 
extremities or not. 

3.1. Defining Thresholds for Distance-Based AD Approaches 

Initially, the distances of training compounds from their centroid were calculated and from this 
resulting vector, the maximum and average distance value (maxdist and d) were derived. The first 
threshold strategy defined the AD considering maxdist as threshold [2]. The second and third strategies 
considered twice and thrice the values of d as their thresholds, respectively. The fourth strategy 
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performed percentile approach on the above derived vector of distances sorted in ascending order and 
the distance value corresponding to 95 percentile (p95) was chosen as the threshold. Finally, the fifth 
strategy (dsz) considered average distance d as well as the standard deviation from the distance vector 
(std) and the threshold was then defined as d std z , where z is the arbitrary parameter and is set to 
0.5 as default value [26].  

For all the cases, distance of a test compound from the training set centroid is compared with the 
defined threshold. If the distance of this test compound from the training set centroid is less than or 
equal to the threshold value, it is considered inside the AD. Thus, these approaches differ the way in 
which thresholds are derived, however the principle behind considering a given test compound to be 
inside or outside AD remains the same. Results derived with all the four threshold strategies are shown 
in Table 2 for CAESAR Model 2 considering different distance measures. 

Table 2. Statistics for CAESAR Model 2 implementing distance-based approaches with 
different thresholds. For the acronyms maxdist, d, p95, dsz, and RMSEP, refer to text. 

Approach Thresholds 
Compounds outside the AD Q2 RMSEP 

CAESAR 
out of 95 (%) 

EPI Suite 
out of 108 (%) 

CAESAR 
EPI 
Suite 

CAESAR 
EPI 
Suite 

Euclidean (maxdist) 0.942 0 (0.0) 4 (3.7) 0.797 0.703 - 1.436 
Euclidean (3*d) 1.018 0 (0.0) 1 (0.9) 0.797 0.676 - 0 
Euclidean (2*d) 0.679 7 (7.4) 12 (11.1) 0.802 0.718 0.146 0.753 
Euclidean (p95)  0.663 7 (7.4) 12 (11.1) 0.802 0.718 0.146 0.753 
Euclidean (dsz) 0.423 15 (15.8) 36 (33.3) 0.791 0.741 0.064 0.381 
CityBlock 
(maxdist) 

1.472 0 (0.0) 1 (0.9) 0.797 0.676 - 2.713 

CityBlock (3*d) 1.863 0 (0.0) 0 (0.0) 0.797 0.616 - - 
CityBlock (2*d) 1.242 3 (3.1) 6 (5.5) 0.804 0.699 0.267 1.049 
CityBlock (p95)  1.084 8 (8.4) 11 (10.1) 0.801 0.705 0.068 0.717 
CityBlock (dsz) 0.748 18 (18.9) 38 (35.1) 0.786 0.739 0.093 0.361 
Mahalanobis 
(maxdist) 

6.614 0 (0.0) 0 (0.0) 0.797 0.616 - - 

Mahalanobis (3*d) 6.027 0 (0.0) 0 (0.0) 0.797 0.616 - - 
Mahalanobis (2*d) 4.018 6 (6.3) 5 (4.6) 0.791 0.624 0.174 0.162 
Mahalanobis (p95)  4.034 6 (6.3) 5 (4.6) 0.791 0.624 0.174 0.162 
Mahalanobis (dsz) 2.497 21 (22.1) 27 (25.0) 0.778 0.706 0.138 0.354 

No test compounds emerged outside the AD with first two strategies considering CAESAR test set, 
due to the higher threshold values; however, comparing the model statistics with the other approaches, 
this probably implies some possible drawbacks of these strategies in defining the interpolation space. 
Comparable results were derived considering the third and fourth strategies which imply the thresholds 
corresponding to twice the value of d and that corresponding to 95 percentile converged significantly 
for both the test sets. Model statistics improved in most of the cases, thus reflecting a reasonable 
choice of compounds outside AD. The final strategy taking into account also the standard deviation 
provided the maximum number of test compounds outside the AD, however with no (or significant) 
improvement to the model statistics for both the test sets. A similar pattern was observed for 
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compounds considered outside the AD with both the test sets, however, with respect to the number of 
compounds considered outside the AD with different threshold strategies, the values were 
comparatively higher with EPI Suite test set. This reflected how diverse both the test sets were in terms 
of their compounds and indicating that the CAESAR test set comprised of compounds more similar to 
the training data as compared to the other test set. None of the strategies performed well with 
Mahalanobis distance measure for CAESAR test set resulting in a negative RMSEP. Similar pattern 
for compounds outside AD was observed for CAESAR model 5 and the corresponding results can be 
found in Table 3. 

Table 3. Statistics for CAESAR Model 5 implementing distance-based approaches with 
different thresholds. Maxdist: Maximum distance between training compounds and 
centroid of the training set; d: Average distance of training compounds from their mean; 

RMSEP: Difference between RMSEP for compounds outside and inside the AD. 

Approach Thresholds 
Compounds outside the AD Q2 RMSEP 

CAESAR 
out of 95 (%) 

EPI Suite 
out of 108 (%) 

CAESAR 
EPI 
Suite 

CAESAR 
EPI 
Suite 

Euclidean (maxdist) 0.942 0 (0.0) 2 (1.8) 0.774 0.647 - 0.598 
Euclidean (3*d) 0.958 0 (0.0) 2 (1.8) 0.774 0.647 - 0.598 
Euclidean (2* d) 0.639 3 (3.1)  9 (8.3) 0.783 0.665 0.329 0.354 
Euclidean (p95)  0.614 4 (4.2) 11 (10.1) 0.783 0.673 0.266 0.367 
Euclidean (dsz) 0.393 23 (24.2) 32 (29.6) 0.753 0.646 0.128 0.044 
CityBlock 
(maxdist) 

1.472 0 (0.0) 2 (1.8) 0.774 0.647 - 0.598 

CityBlock (3*d) 1.791 0 (0.0) 1 (0.9) 0.774 0.634 - 0.037 
CityBlock (2*d) 1.194 1 (1.0) 5 (4.6) 0.772 0.657 0.417 0.457 
CityBlock (p95)  1.085 4 (4.2) 11 (10.1) 0.767 0.665 0.309 0.308 
CityBlock (dsz) 0.723 21 (22.1) 32 (29.6) 0.751 0.639 0.156 0.022 
Mahalanobis 
(maxdist) 

6.957 0 (0.0) 0 (0.0) 0.774 0.633 - - 

Mahalanobis (3*d) 6.121 0 (0.0) 0 (0.0) 0.774 0.633 - - 
Mahalanobis (2*d) 4.081 3 (3.1) 6 (5.5) 0.767 0.621 0.445 0.275 
Mahalanobis (p95)  3.859 5 (5.2) 6 (5.5) 0.764 0.621 0.327 0.275 
Mahalanobis (dsz) 2.495 23 (24.2) 18 (16.6) 0.760 0.637 0.081 0.035 

The study was further extended by implementing the above mentioned threshold strategies for each 
distance measure, but considering average distance of each training compound from its first 5 nearest 
neighbors. Given a n by n distance matrix where n is total number of training compounds, in all the 
cases, average distance of each training sample from its first five nearest training neighbors is found. 
Later, the gross average is derived from these average distance values which will be denoted 
henceforth as D. In the first and second case, twice and thrice the value of D is considered as threshold, 
respectively. For the third case, percentile approach discussed earlier in potential density distribution 
methods, is applied on the sorted average distances of all training compounds (used to calculate D) and 
the value corresponding to 95 percentile (p95) is considered as threshold [27]. For the last strategy 
(DSZ), besides calculating the gross average distance D from the first five nearest neighbors, also the 
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standard deviation (Std) is calculated on the average distances. Finally, the threshold is defined as 
D Std z , where z is the arbitrary parameter and is set to 0.5 as default value [26]. For all the cases, 
average distance of a test compound from its first five nearest neighbors in the training set is compared 
with the defined threshold. If the average distance for this test compound is less than or equal to the 
threshold value, it is considered inside the AD. 

Results derived with all the four threshold strategies are shown in Tables 4 and 5 for CAESAR 
Model 2 and Model 5, respectively, considering different distance measures.  

Table 4. Statistics for CAESAR Model 2 implementing different 5NN based threshold 
strategies. For the acronyms D, p95, DSZ, and RMSEP, refer to text. 

Approach Thresholds 
Compounds outside the AD Q2 RMSEP 

CAESAR 
out of 95(%)

EPI Suite 
out of 108(%)  

CAESAR 
EPI 
Suite 

CAESAR 
EPI 
Suite 

Euclidean (3*D) 1.522 2 (2.1) 1 (0.9) 0.804 0.676 0.394 2.713 
Euclidean (2* D) 1.015 9 (9.5) 16 (14.8) 0.795 0.750 0.037 0.765 
Euclidean (p95)  1.164 8 (8.4) 13 (12.0) 0.797 0.745 0.859 1.342 
Euclidean (DSZ) 0.693 14 (14.7) 31 (28.7) 0.787 0.767 0.113 0.517 
CityBlock (3*D) 2.371 4 (4.2) 5 (4.6) 0.803 0.679 0.187 0.968 
CityBlock (2*D) 1.581 10 (10.5) 18 (16.7) 0.794 0.742 0.042 0.664 
CityBlock (p95)  1.918 7 (7.4) 11 (10.2) 0.799 0.741 0.034 0.944 
CityBlock (DSZ) 1.083 16 (16.8) 27 (25.0) 0.801 0.731 0.037 0.446 
Mahalanobis (3*D) 1.718 3 (3.2) 4 (3.7) 0.803 0.628 0.221 0.295 
Mahalanobis (2*D) 1.145 9 (9.5) 18 (16.7) 0.794 0.748 0.045 0.691 
Mahalanobis (p95)  1.388 6 (6.3) 11 (10.2) 0.801 0.735 0.908 1.183 
Mahalanobis (DSZ) 0.786 19 (20.0) 29 (26.9) 0.795 0.745 0.019 0.470 

Table 5. Statistics for CAESAR Model 5 implementing different 5NN based threshold 
strategies. D: The gross average distance of training set compounds from their 5NN; 

RMSEP: Difference between RMSEP for compounds outside and inside the AD. 

Approach Thresholds 
Compounds outside the AD Q2 RMSEP 

CAESAR 
out of 95 (%) 

EPI Suite 
out of 108 (%)  

CAESAR 
EPI 
Suite 

CAESAR
EPI 
Suite 

Euclidean (3*D) 1.681 0 (0.0) 2 (2.8) 0.774 0.644 - 0.364 
Euclidean (2* D) 1.121 7 (7.4) 13 (12.0) 0.781 0.690 0.130 0.437 
Euclidean (p95)  1.331 1 (1.0) 7 (6.5) 0.772 0.656 0.331 0.126 
Euclidean (DSZ) 0.782 18 (18.9) 22 (20.4) 0.784 0.743 0.072 0.512 
CityBlock (3*D) 2.684 1 (1.1) 5 (4.6) 0.772 0.648 0.456 0.307 
CityBlock (2*D) 1.789 9 (9.5) 12 (11.1) 0.788 0.690 0.190 0.462 
CityBlock (p95)  2.302 2 (2.1) 8 (7.4) 0.785 0.657 0.529 0.310 
CityBlock (DSZ) 1.232 19 (20.0) 30 (27.8) 0.782 0.753 0.055 0.433 
Mahalanobis (3*D) 2.006 0 (0.0) 4 (3.7) 0.774 0.624 0.326 0.149 
Mahalanobis (2*D) 1.337 6 (6.3) 10 (9.3) 0.779 0.683 0.115 0.482 
Mahalanobis (p95)  1.668 2 (2.1) 6 (5.6) 0.771 0.631 0.193 0.043 
Mahalanobis (DSZ) 0.933 21 (22.1) 24 (22.2) 0.792 0.713 0.110 0.356 
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As obvious from Table 4, lowest number of test compounds were considered outside AD with the 
strategy considering 3*D as threshold. When the thresholds were lowered to 2*D, several other test 
compounds were considered outside the AD, however, the model performed worse with CAESAR test 
set. Same pattern was observed considering EPI Suite test set however, without lowering the model 
statistics and the number of test compounds outside the AD were comparatively higher in this case. 
Strategy taking into account also the standard deviation, was associated with the lowest threshold value 
thus, restricting the AD. Large number of compounds were considered outside the AD without 
improving the model statistics. The percentile approach considered reasonable number of test 
compounds outside AD without any major impact on the model statistics and the results were 
comparatively better with EPI Suite test set. Similar results and considerations were derived with 
CAESAR model 5.  

The next and the final step was to finalize upon one threshold strategy for distance-based 
approaches. All the four above mentioned strategies behaved differently depending on the distance 
measure considered. A strategy that improved the model statistics for one distance measure couldn’t 
have similar impact for another distance measure. This observation couldn’t allow an easy 
interpretation towards finalizing upon one strategy. However, considering improved model statistics 
with reasonable number of test compounds considered outside the AD, the percentile approach was a 
preferred choice. Moreover, when the methodologies for different AD methods were described earlier, 
Probability Density Distribution method reflected the statistical significance of defining percentiles. 
These considerations concluded finalizing upon the percentile approach for overall comparison of the 
results. This approach was implemented initially considering the distance of training compounds from 
their centroid (p95) and in the later case, based on average distance of training compounds from their 5 
nearest neighbors (p95). Both the considerations were different in defining the interpolation space and 
thus, resulted in different number of compounds outside the AD with the same distance measure. 
Information derived in both the cases was significant and thus was retained for the overall comparison 
of the results. 

3.2. Overall Comparisons 

The distance-based approaches were then compared with other previously discussed AD 
approaches, considering the both CAESAR (95 compounds) and EPI suite (108 compounds) test sets. 
The results are summarized in Tables 6 and 7 for CAESAR Model 2 and Model 5, respectively. 

As shown in Table 6, by performing PCA analysis along with Bounding Box approach on Model 2, 
two test compounds were considered outside the AD. Convex Hull and Probability Density approach 
led to maximum number of test compounds outside the AD, thus decreasing the generalization ability 
of the models. p95 approach lowered the model statistics for Mahalanobis distance measure. Q2 
slightly lowered for Convex Hull that considered several test compounds outside the AD. On the other 
hand, model statistics improved for Probability Density Distribution approach which was associated 
with the maximum number of test compounds outside the AD (42.6%). As a general remark, the model 
statistics improved for several approaches with increase in number of test compounds considered 
outside the AD. Since the CAESAR test set comprised compounds more similar to the training set, not 
many test compounds emerged outside the AD; however, the EPI suite test set is comparatively 
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different from the training data and thus considerably more compounds were outside the AD by 
different approaches. RMSEP remained positive considering most of the AD approaches. Similar 
pattern for compounds outside the AD was derived for CAESAR model 5 and the corresponding 
results are reported in Table 7. 

Table 6. Statistics for CAESAR Model 2 applied to CAESAR and EPI Suite test sets for 
different AD approaches. 

Approach 
Compounds outside the AD Q2 RMSEP 

CAESAR 
out of 95 (%) 

EPI Suite 
out of 108 (%) CAESAR EPI 

Suite CAESAR EPI 
Suite 

Euclidean Dist. (p95) 7 (7.4) 12 (11.1) 0.802 0.718 0.146 0.753 
City Block Dist. (p95) 8 (8.4) 11 (10.1) 0.801 0.705 0.068 0.717 
Mahalanobis Dist. (p95) 6 (6.3) 5 (4.6) 0.791 0.624 0.174 0.162 
5NN-Euclidean Dist. (p95)  8 (8.4) 13 (12.0) 0.797 0.745 0.859 1.342 
5NN-CityBlock Dist. (p95)  7 (7.4) 11 (10.2) 0.799 0.741 0.034 0.944 
5NN-Mahalanobis Dist. (p95) 6 (6.3) 11 (10.2) 0.801 0.735 0.908 1.183 
Bounding Box 0 (0.0) 2 (1.8) 0.797 0.678 - 1.798 
PCA Bounding Box 2 (2.1) 3 (2.8) 0.804 0.688 0.371 1.533 
Convex Hull 22 (23.2) 31 (28.7) 0.789 0.721 0.052 0.368 
Potential Function 29 (30.5) 46 (42.6) 0.831 0.766 0.156 0.374 

Table 7. Statistics for CAESAR Model 5 applied to CAESAR and EPI Suite test sets for 
different AD approaches. 

Approach 
Compounds outside the AD Q2 RMSEP 

CAESAR 
out of 95 (%) 

EPI Suite 
out of 108 (%) CAESAR EPI 

Suite CAESAR EPI 
Suite 

Euclidean Dist. (p95) 4 (4.2) 11 (10.1) 0.783 0.673 0.266 0.367 
City Block Dist. (p95) 4 (4.2) 11 (10.1) 0.767 0.665 0.309 0.308 
Mahalanobis Dist. (p95) 5 (5.2) 6 (5.5) 0.764 0.621 0.327 0.275 
5NN-Euclidean Dist. (p95)  1 (1.0) 7 (6.5) 0.772 0.656 0.331 0.126 
5NN-CityBlock Dist. (p95)  2 (2.1) 8 (7.4) 0.785 0.657 0.529 0.310 
5NN-Mahalanobis Dist. (p95) 2 (2.1) 6 (5.6) 0.771 0.631 0.193 0.043 
Bounding Box 0 (0.0) 1 (0.9) 0.774 0.634 - 0.037 
PCA Bounding Box 0 (0.0) 2 (1.8) 0.774 0.634 - 0.021 
Convex Hull 16 (16.8) 21 (19.4) 0.780 0.643 0.049 0.051 
Potential Function 28 (29.5) 47 (43.5) 0.787 0.813 0.062 0.455 

To visualize where test set compounds were located with respect to the training compounds, 
multidimensional scaling (MDS) was performed. This enabled the representation of 5 dimensional data 
(the molecular descriptors defining the CAESAR models) by means of a two dimensional plot. 

From the MDS plots in Figure 1, it is clear that several test compounds that were localized towards 
the extremities of training set were considered outside the AD with most of the approaches. For 
example, CAESAR test compound 33 and EPI Suite test compound 60 were considered outside on the 
basis of 7 and 9 AD approaches, respectively. However, there were several compounds that were quite 
close to the training space but still falling outside the AD, especially with Convex Hull and Probability 
Density approaches (for example, CAESAR test compound 38 and EPI Suite test compound 33). Since 
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the internal empty regions within chemical space cannot be easily detected and correlation between 
descriptors cannot be explained with Bounding Box, this approach failed to consider any test 
compound outside the AD. When the same approach was implemented on this dataset after PCA 
analysis, the correlation between descriptors was taken into account and as a result, two compounds 
from the test set were considered outside the AD. With respect to the EPI Suite test set, the MDS plots 
showed how most of test compounds outside the AD were lying in the training set extremities and 
were almost the same for different AD approaches. Those compounds were further more distant from 
training set than in the CAESAR test set. Similar results were derived for CAESAR model 5 and the 
corresponding plots are shown in Figure 2. 

Figure 1. CAESAR test set (a) and Epi Suite test set (b) projected in the training space of 
Model 2. Training set (+); test set ( ); compounds outside the AD with different 
approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and PCA Bound. 
Box ( ), Conv. Hull ( ), Pot. Funct. ( ). 

 

 

(a) 

(b) 
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Figure 2. CAESAR test set (a) and Epi Suite test set (b) projected in the training space of 
Model 5. Training set (+); test set ( ); compounds outside the AD with different 
approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and PCA Bound. 
Box ( ), Conv. Hull ( ), Pot. Funct. ( ).  

 

 

It was observed for both the CAESAR models that some compounds very close to the training 
compounds were considered outside the AD while others lying further were considered inside it. This 
could be explained by the fact that most of the implemented approaches considered only interpolation 
by simply excluding all test compounds in the extremities and including all those surrounded by 
training set compounds even if they are situated within empty regions of the chemical space. 

Figure 3 provides the calculated logBCF values from the CAESAR Model 2 plotted against the 
experimental log BCF values (Exp logBCF). It can be noted that several test compounds not so reliably 
predicted were considered outside the AD. On the other hand, well predicted test compounds like 34 in 

(a) 

(b) 
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CAESAR test set and 59 in EPI Suite test set were considered outside by 2 and 5 AD approaches 
respectively. This indicates that the strategy used by different AD approaches might have considered 
some well predicted compounds outside the AD, thus affecting the model statistics. As seen earlier in 
Tables 6 and 7, Convex Hull and Probability Density Distribution approaches had considerable 
number of test compounds outside the AD; however, both the approaches differed significantly with 
respect to the model statistics. The results corresponding to CAESAR model 5 are plotted in Figure 4. 

Figure 3. Predicted Vs observed log BCF values for CAESAR test set (a) and Epi Suite 
test set (b) with Model 2. Training set (+); test set ( ); compounds outside the AD with 
different approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and 
PCA Bound. Box ( ), Conv. Hull ( ), Pot. Funct. ( ). 

 

 

(a) 

(b) 
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Figure 4. Predicted Vs observed log BCF values for CAESAR test set (a) and Epi Suite 
test set (b) with Model 5. Training set (+); test set ( ); compounds outside the AD with 
different approaches; distance based p95 ( ), distance based 5NN ( ), Bound. Box and 
PCA Bound. Box ( ), Conv. Hull ( ), Pot. Funct. ( ). 

 

 

The plots indicate that several test compounds unreliably predicted were localized on the 
extremities of the training space and considered outside the AD while several well predicted test 
compounds were also considered outside with different approaches. This observation holds true for 
both the test sets however, the number of test compounds considered outside the AD were 
considerably higher for EPI Suite test set. Figure 3b shows that the three compounds 56, 57 and 60 
considered outside the AD by several approaches were underestimated, and thus the model statistics 
highly improved with AD approaches not considering them within the domain of applicability.  

(a) 

(b) 
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4. Conclusions  

The characterization of interpolation space varied depending on the Applicability Domain approach 
implemented. Approaches compared in this study suffered from several limitations, some concerning 
the complexity of algorithm while some related to the algorithm used for defining interpolation space. 
Addition of PCA did not contribute significantly to the Bounding Box approach with the first test set 
however, with respect to the second validation set, performing PCA analysis had a significant impact 
on improving the model statistics. Probability Density Distribution approach and Convex Hull were 
associated with the highest number of test compounds outside the AD and thus allowing only a limited 
use of the models. Distance-based approaches considered reasonable number of test compounds 
outside the AD, however model statistics lowered for some distance measures. As expected, most of 
the test compounds considered outside the AD with most of the approaches were concentrated towards 
the training set extremities. It was clearly evident from the MDS plots that the distance from training 
space was significant in defining the model’s AD. Also, several test compounds badly predicted by the 
model were considered as outside the AD with most of the approaches. The results from the alternative 
test set provided were similar; however, number of test compounds outside the AD increased. When 
various thresholds were subjected to distance-based approaches, it was noted, however with some 
exceptions, that increase in the number of test compounds outside AD also improved the model’s 
statistics. Finally, all the implemented AD approaches had their own strengths and limitations and thus, 
it is up to the model builder to choose most appropriate applicability domain approach for his model. 
For instance, in this study, one of the aspects considered to evaluate a given AD approach was the 
number of test compounds outside the AD and its resulting impact on the model performance. It is 
important to note that the results derived with different AD approaches may vary for the same dataset 
and none of these approaches can be considered sufficient enough to be applied to all the cases; 
therefore, considering the present state of the art, it would be preferable to evaluate the results from all 
possible strategies before assessing a new compound set.  
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